Violympic toán 9

Hoàng Ngọc Tuyết Nung

cho a,b,c>0 , a+b+c=1.cmr

\(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge64\)

Phùng Khánh Linh
29 tháng 7 2018 lúc 9:52

\(VT=\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)=\left(1+\dfrac{1}{b}+\dfrac{1}{a}+\dfrac{1}{ab}\right)\left(1+\dfrac{1}{c}\right)=1+\dfrac{1}{c}+\dfrac{1}{b}+\dfrac{1}{bc}+\dfrac{1}{a}+\dfrac{1}{ac}+\dfrac{1}{ab}+\dfrac{1}{abc}=1+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}+\dfrac{1}{abc}\) Áp dụng BĐT Cauchy nhiều lần , ta có :

\(a+b+c\ge3\sqrt[3]{abc}\Leftrightarrow\left(\dfrac{a+b+c}{3}\right)^3\ge abc\Leftrightarrow\dfrac{1}{27}\ge abc\Leftrightarrow\dfrac{1}{abc}\ge27\)

\(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\ge3\sqrt[3]{\dfrac{1}{ab}.\dfrac{1}{bc}.\dfrac{1}{ac}}=3\sqrt[3]{\left(\dfrac{1}{abc}\right)^2}\ge3\sqrt[3]{27.27}=27\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\ge3\sqrt[3]{27}=9\)

\(\Rightarrow VT\ge27+9+27+1=64\)

\(\Leftrightarrow\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge64\)

\("="\Leftrightarrow a=b=c=\dfrac{1}{3}\)

Bình luận (0)
Phạm Phương Anh
29 tháng 7 2018 lúc 21:07

Ta có:

\(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)=\left(1+\dfrac{a+b+c}{a}\right)\left(1+\dfrac{a+b+c}{b}\right)\left(1+\dfrac{a+b+c}{c}\right)\)

\(=\left(\dfrac{2a+b+c}{a}\right)\left(\dfrac{a+2b+c}{b}\right)\left(\dfrac{a+b+2c}{c}\right)\)

\(=\left(\dfrac{a+b}{a}+\dfrac{a+c}{a}\right)\left(\dfrac{a+b}{b}+\dfrac{b+c}{b}\right)\left(\dfrac{a+c}{c}+\dfrac{b+c}{c}\right)\)

Áp dụng bất đẳng thức Cô - si ta có:

\(\dfrac{a+b}{a}+\dfrac{a+c}{a}\ge2\sqrt{\dfrac{\left(a+b\right)\left(a+c\right)}{a^2}}\)

\(\dfrac{a+b}{b}+\dfrac{b+c}{b}\ge2\sqrt{\dfrac{\left(a+b\right)\left(b+c\right)}{b^2}}\)

\(\dfrac{a+c}{c}+\dfrac{b+c}{c}\ge2\sqrt{\dfrac{\left(a+c\right)\left(b+c\right)}{c^2}}\)

\(\Rightarrow\left(\dfrac{a+b}{a}+\dfrac{a+c}{a}\right)\left(\dfrac{a+b}{b}+\dfrac{b+c}{b}\right)\left(\dfrac{a+c}{c}+\dfrac{b+c}{c}\right)\ge8\sqrt{\dfrac{\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}{a^2b^2c^2}}=8.\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)

Áp dụng bất đẳng thức Cô - si ta có:

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(c+a\ge2\sqrt{ca}\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\sqrt{a^2b^2c^2}=8abc\)

\(8.\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\ge8\sqrt{a^2b^2c^2}=8.\dfrac{8abc}{abc}=64\)

hay \(\left(1+\dfrac{1}{a}\right)\left(1+\dfrac{1}{b}\right)\left(1+\dfrac{1}{c}\right)\ge64\) (đpcm)

Bình luận (0)

Các câu hỏi tương tự
Box Gaming
Xem chi tiết
T.Huyền
Xem chi tiết
Anh Phạm Xuân
Xem chi tiết
Cố Gắng Hơn Nữa
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
Luyri Vũ
Xem chi tiết
Nguyễn Thị Bình Yên
Xem chi tiết
Nguyễn Thị Bình Yên
Xem chi tiết
Hoang Linh
Xem chi tiết