Ôn tập toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
_ Yuki _ Dễ thương _

Tam giác ABC có \(\widehat{B}=60^o\). Hai tia phân giác AD và CE của \(\widehat{ABC}\)\(\widehat{ACB}\) cắt nhau ở I. CMR : ID = IE

Akai Haruma
8 tháng 12 2017 lúc 0:46

Lời giải:

Từ $I$ kẻ $IK, IL$ lần lượt vuông góc với $AB,AC$

Vì $I$ là giao điểm của hai tia phân giác $AD$ và $CE$ nên đồng thời $I$ cũng nằm trên tia phân giác của góc $ABC$

Do đó khoảng cách từ $I$ đến $AB$ bằng khoảng cách từ $I$ đến $AC$

\(\Leftrightarrow IK=IL\)

Lại có:

\(\angle IEK=\angle CEA=180^0-\angle EAC-\angle ACE=180^0-\angle BAC-\frac{\angle ACB}{2}\)

\(\angle IDL=\angle ADB=\angle DAC+\angle DCA=\frac{\angle BAC}{2}+\angle ACB\)

\(\Rightarrow \angle IEK-\angle IDL=180^0-\frac{3}{2}(\angle BAC+\angle ACB)\)

\(=180^0-\frac{3}{2}(180^0-60^0)=0\)

\(\Rightarrow \angle IEK=\angle IDL\)

Xét tam giác $IEK$ và tam giác $IDL$ có:

\(\left\{\begin{matrix} \angle IEK=\angle IDL\\ \angle IKE=\angle ILD=90^0\\ \end{matrix}\right.\Rightarrow \triangle IEK\sim \triangle IDL\)

\(\Rightarrow \frac{IE}{ID}=\frac{IK}{IL}=1\Rightarrow IE=ID\)


Các câu hỏi tương tự
Vương Hàn
Xem chi tiết
Trần Ngọc An Như
Xem chi tiết
Nguyễn Hoàng Ngọc Hân
Xem chi tiết
Nguyễn Tiến Dũng
Xem chi tiết
Trần Nguyễn Hoài Thư
Xem chi tiết
Trần Nguyễn Hoài Thư
Xem chi tiết
Nguyễn Trần Như Hằng
Xem chi tiết
Trần Nguyễn Hoài Thư
Xem chi tiết
Anh Chau
Xem chi tiết