Lời giải:
Từ $I$ kẻ $IK, IL$ lần lượt vuông góc với $AB,AC$
Vì $I$ là giao điểm của hai tia phân giác $AD$ và $CE$ nên đồng thời $I$ cũng nằm trên tia phân giác của góc $ABC$
Do đó khoảng cách từ $I$ đến $AB$ bằng khoảng cách từ $I$ đến $AC$
\(\Leftrightarrow IK=IL\)
Lại có:
\(\angle IEK=\angle CEA=180^0-\angle EAC-\angle ACE=180^0-\angle BAC-\frac{\angle ACB}{2}\)
\(\angle IDL=\angle ADB=\angle DAC+\angle DCA=\frac{\angle BAC}{2}+\angle ACB\)
\(\Rightarrow \angle IEK-\angle IDL=180^0-\frac{3}{2}(\angle BAC+\angle ACB)\)
\(=180^0-\frac{3}{2}(180^0-60^0)=0\)
\(\Rightarrow \angle IEK=\angle IDL\)
Xét tam giác $IEK$ và tam giác $IDL$ có:
\(\left\{\begin{matrix} \angle IEK=\angle IDL\\ \angle IKE=\angle ILD=90^0\\ \end{matrix}\right.\Rightarrow \triangle IEK\sim \triangle IDL\)
\(\Rightarrow \frac{IE}{ID}=\frac{IK}{IL}=1\Rightarrow IE=ID\)