Ôn tập cuối năm môn Đại số 11

Hỏi đáp

Lâm Nguyệt Hy
Xem chi tiết
CÔNG CHÚA THẤT LẠC
18 tháng 5 2017 lúc 22:25

a) cosx – √3sinx = √2 ⇔ cosx – tan π/3sinx = √2 ⇔ cos π/3cosx – sinπ/3sinx = √2cosπ/3 ⇔ cos(x +π/3) = √2/2 ⇔ b) 3sin3x – 4cos3x = 5 ⇔ 3/5sin3x – 4/5cos3x = 1. Đặt α = arccos thì phương trình trở thành cosαsin3x – sinαcos3x = 1 ⇔ sin(3x – α) = 1 ⇔ 3x – α = π/2 + k2π ⇔ x = π/6 +α/3 +k(2π/3) , k ∈ Z (trong đó α = arccos3/5). c) Ta có sinx + cosx = √2cos(x – π/4) nên phương trình tương đương với 2√2cos(x – π/4) – √2 = 0 ⇔ cos(x – π/4) = 1/2 ⇔ d) 5cos2x + 12sin2x -13 = 0 ⇔ Đặt α = arccos5/13 thì phương trình trở thành cosαcos2x + sinαsin2x = 1 ⇔ cos(2x – α) = 1 ⇔ x = α/2 + kπ, k ∈ Z (trong đó α = arccos 5/13).

Lê Trà My
Xem chi tiết
Anh Triêt
23 tháng 5 2017 lúc 22:11

Hoàng Bii
Xem chi tiết
chu thị ánh nguyệt
8 tháng 6 2017 lúc 16:42

a. y''= \(\dfrac{4}{\left(x+1\right)^3}\)

Hoàng Bii
Xem chi tiết
chu thị ánh nguyệt
8 tháng 6 2017 lúc 16:34

1.

a. TXĐ: D=R

f '(x) = 4x3 - 4x

cho f '(x) = 0 =>\(\left[{}\begin{matrix}x=1\\x=-1\\x=0\end{matrix}\right.\)

lập bảng xét dấu ta đk

hàm số đồng biến trên (-1;0)và (1;+\(\infty\) )

hàm số nghịch biến trên (-\(\infty\) ; -1) và (0;1)

b. từ bảng biến thiên

hàm số đạt cực đại tại x= 0

hàm số đạt cực tiểu tại x= -1 và 1

octobot123
Xem chi tiết
ThảO Nguyên
4 tháng 12 2018 lúc 22:03

7+4√3

Pham Tien Dat
29 tháng 3 2021 lúc 20:53

\(P=\left[\left(7+4\sqrt{3}\right)\left(4\sqrt{3}-7\right)\right]^{2016}\cdot\left(7+4\sqrt{3}\right)=\left(-1\right)^{2016}\cdot\left(7+4\sqrt{3}\right)=7+4\sqrt{3}\)

octobot123
Xem chi tiết
văn tài
25 tháng 7 2017 lúc 14:12

- Nếu m = -1,hàm số trở thành y=-2x2-x+4 và y'=-4x-1.Dễ thấy hàm số đồng biến trên \(\left(-\infty;-\dfrac{1}{4}\right)\)và nghịch biến trên \(\left(-\dfrac{1}{4};+\infty\right)\).

- Nếu m = 1,hàm số trở thành y = -x + 4 luôn nghịch biến trên \(\left(-\infty;+\infty\right)\).Vậy m=1 là một giá trị nguyên thỏa mãn.

- Nếu m \(\ne\pm1\),ta có y'=3(m2-1)x2+2(m-1)x-1.

Để hàm số nghịch biến trên khoảng\(\left(-\infty;+\infty\right)\Leftrightarrow\)y'\(\le\)0,\(\forall x\in\)R

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-1< 0\\\Delta'=\left(m-1\right)^2+3\left(m^2-1\right)\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1< m< 1\\\left(m-1\right)\left(4m+2\right)\le0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}-1< m< 1\\-\dfrac{1}{2}\le m\le1\end{matrix}\right.\Leftrightarrow}-\dfrac{1}{2}\le m< 1}\)

Suy ra có 1 nguyên m=0 thỏa mãn yêu cầu bài toán trong trường hợp này.

Vậy có tất cả hai giá trị nguyên m=0,m=1 thỏa mãn bài toán.

 

Chú bé rồng online
Xem chi tiết
Adonis Baldric
5 tháng 8 2017 lúc 12:30

\(tan\cdot\left(x+\dfrac{\pi}{4}\right)+cot\cdot\left(2x-\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow tan\cdot\left(x+\dfrac{\pi}{4}\right)=-cot\cdot\left(2x-\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow tan\cdot\left(x+\dfrac{\pi}{4}\right)=cot\cdot\left(-2x+\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow tan\cdot\left(x+\dfrac{\pi}{4}\right)=tan\cdot\left(\dfrac{\pi}{2}+2x-\dfrac{\pi}{3}\right)\)

\(\Leftrightarrow tan\cdot\left(x+\dfrac{\pi}{4}\right)=tan\cdot\left(\dfrac{\pi}{6}+2x\right)\)

\(\Leftrightarrow x+\dfrac{\pi}{4}=\dfrac{\pi}{6}+2x+k\pi\)

\(\Leftrightarrow-x=\dfrac{-\pi}{12}+k\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{12}-k\pi\left(k\in Z\right)\)

Phelan Egan
Xem chi tiết
Adonis Baldric
14 tháng 8 2017 lúc 16:42

a, \(sin\dfrac{x}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x+1-2cos^2\cdot\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)=0\)

\(\Leftrightarrow sin\dfrac{x}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x+1-2\cdot\left[1+cos2\cdot\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)\right]=0\)

\(\Leftrightarrow sin\dfrac{x}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x+1-1-cos\left(\dfrac{\pi}{2}-x\right)=0\)

\(\Leftrightarrow sin\dfrac{s}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x-sinx=0\)

\(\Leftrightarrow sinx\cdot\left(sin\dfrac{x}{2}-sinx\cdot cos\dfrac{x}{2}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\text{ (1) }\\sin\dfrac{x}{2}-sinx\cdot cos\dfrac{x}{2}-1=0\text{ (2) }\end{matrix}\right.\)

(1) : \(sinx=0\Leftrightarrow x=k\pi\left(k\in Z\right)\)

(2) : \(sin\dfrac{x}{2}-sinx\cdot cos\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}-cos\dfrac{x}{2}\cdot2sin\dfrac{x}{2}\cdot cos\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}\cdot cos^2\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}\cdot\left(1-sin^2\dfrac{x}{2}\right)-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}+2sin^3\dfrac{x}{2}-1=0\)

\(\Leftrightarrow2sin^3\dfrac{x}{2}-sin\dfrac{x}{2}-1=0\)

\(\Leftrightarrow sin\dfrac{x}{2}=1\Leftrightarrow\dfrac{x}{2}=\dfrac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\pi+k4\pi\left(k\in Z\right)\)

Adonis Baldric
14 tháng 8 2017 lúc 17:03

b, \(tanx-3cotx=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\)

\(\Leftrightarrow\dfrac{sinx}{cosx}-\dfrac{3cos}{sinx}=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\)

\(\Leftrightarrow\dfrac{sin^2x-3cos^2x}{sinx-cosx}=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\)

\(\Leftrightarrow sin^2x-3cos^2x=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\cdot sinx\cdot cosx\)

\(\Leftrightarrow\left(sinx-\sqrt{3}\cdot cosx\right)\cdot\left(sinx+\sqrt{3}\cdot cosx\right)=4\left(sinx+\sqrt{3}\cdot cosx\right)\cdot sinx\cdot cosx\)

\(\Leftrightarrow\left(sinx+\sqrt{3}\cdot cosx\right)\cdot\left[\left(sinx-\sqrt{3}\cdot cosx\right)-4sinx\cdot cosx\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+\sqrt{3}\cdot cosx=0\text{ (1) }\\sinx-\sqrt{3}\cdot cosx-4sinx\cdot cosx=0\text{ (2) }\end{matrix}\right.\)

(1) : \(sinx+\sqrt{3}\cdot cosx=0\)

\(\Leftrightarrow\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=0\)

\(\Leftrightarrow cos\dfrac{\pi}{3}\cdot sinx+sin\dfrac{\pi}{3}\cdot cosx=0\)

\(\Leftrightarrow sin\cdot\left(x+\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow x+\dfrac{\pi}{3}=k\pi\Leftrightarrow x=\dfrac{-\pi}{3}+k\pi\left(k\in Z\right)\)

(2) : \(sinx-\sqrt{3}cosx-4sinx\cdot cosx=0\)

\(\Leftrightarrow sinx-\sqrt{3}cos=2sin2x\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cos2=sin2x\)

\(\Leftrightarrow cos\dfrac{\pi}{3}-sinx-sin\dfrac{\pi}{3}\cdot cosx=sin2x\)

\(\Leftrightarrow sin\cdot\left(x-\dfrac{\pi}{3}\right)=sin2x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=2x+k2\pi\\x-\dfrac{\pi}{3}=\pi-2x+k2\pi\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{3}+k2\pi\\x=\dfrac{4\pi}{9}+\dfrac{k2\pi}{3}\left(k\in Z\right)\end{matrix}\right.\)

Nguyễn Hải Yến
Xem chi tiết
Trái Tim Hoá Đá
Xem chi tiết