1. Cho tam giác ABC, gọi BM và CN lần lượt là các đường trung tuyến sao cho BM vuông góc với CN. Chứng minh cotA = 2 (cotB + cotC)
2. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC vuông cân tại A có H là trung điểm của BC, D là hình chiếu vuông góc của H trên AC và M là trung điểm HD. Đường thẳng BD đi qua E(0;4) và AC đi qua điểm F(-1;5). Tìm tọa độ các đỉnh A, B, C biết đường thẳng AM có phương trình x - 3y + 14 = 0 và A có hoành độ âm
a) Giải phương trình : \(\cos2x-\cos3x+\cos4x=0\)
b) Chứng minh rằng nếu tam giác ABC có số đo các góc là A, B, C thỏa mãn điều kiện \(\dfrac{\sin B}{\sin C}=2\cos A\) thì đó là tam giác cân
Giả sử A, B, C là ba góc của tam giác ABC, chứng minh rằng :
a) \(\dfrac{\sin C}{\cos A\cos B}=\tan A+\tan B\)
b) \(\sin A+\sin B+\sin C=4\cos\dfrac{A}{2}\cos\dfrac{B}{2}\cos\dfrac{C}{2}\)
c) \(\dfrac{\sin A+\sin B+\sin C}{\sin A+\sin B-\sin C}=\cot\dfrac{A}{2}\cot\dfrac{B}{2}\)
Cho (H) là đa giác đều có 252 đường chéo. Chọn ngẫu nhiên 1 tam giác có 3 đỉnh là 3 đỉnh của (H). Tính xác suất để tam giác được chọn là tam giác vuông không cân.
với mọi số nguyên dương n, đặt Sn= 1/1 +1/2 +1/3 + ... +1/n
chứng minh rằng với mọi số thực M đều tồn tại số nguyên dương n để Sn>M
Cho a,b,c là độ dài của 3 cạnh tam giác:
Chứng minh rằng:
\(\frac{\sqrt{2\left(b^2+c^2\right)-a^2}}{a}+\frac{\sqrt{2\left(c^2+a^2\right)-b^2}}{b}+\frac{\sqrt{2\left(a^2+b^2\right)-c^2}}{c}\ge3\sqrt{3}\)
Chứng minh rằng với mọi số tự nhiên n, \(\left(2^{3^{^n}}+1\right)⋮\left(3^{n+1}\right)\)nhưng không chia hết cho \(3^{n+2}\)
Cho dãy số \(\left(u_n\right)\) với \(u_n=3-2n\)
a) Xét tính tăng, giảm của dãy số
b) Chứng minh rằng dãy số trên là cấp số cộng
c) Tính tổng của 100 số hạng đầu của dãy số
Chứng minh rằng phương trình \(8x^3-6x-1=0\) có 3 nghiệm phân biệt. Hãy tìm 3 nghiệm đó