Bài 6: Ôn tập chương Vecơ trong không gian. Quan hệ vuông góc trong không gian.

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Toàn
Xem chi tiết
Pham Tien Dat
31 tháng 3 2021 lúc 22:01

\(\overrightarrow{AB}\left(7;3\right)\) là 1 vecto chỉ phương của đt 

=> gọi \(\overrightarrow{n}\left(-3;7\right)\) là vecto pháp tuyến của đt

Đt đi qua A(-3;2)

=> pt tổng quát của đt : \(-3\left(x+3\right)+7\left(y-2\right)=0\Leftrightarrow-3x+7y-23=0\)

 

Minh Nguyệt
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 4 2021 lúc 10:14

Bài này đặt ở khu vực lớp 12 mình còn giải (vì có thể sử dụng tọa độ hóa cực lẹ)

Còn lớp 11 thì dựng hình được, nhưng việc tính toán số liệu sau đó đúng là thảm họa.

Nguyễn Việt Lâm
3 tháng 4 2021 lúc 22:11

\(=\lim\limits_{x\rightarrow1}\dfrac{\sqrt{x^2+x+2}-2+2-\sqrt[3]{7x+1}}{\sqrt[]{2}\left(x-1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x^2+x-2}{\sqrt[]{x^2+x+2}+2}+\dfrac{8-\left(7x+1\right)}{4+2\sqrt[3]{7x+1}+\sqrt[3]{\left(7x+1\right)^2}}}{\sqrt[]{2}\left(x-1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{\left(x-1\right)\left(x+2\right)}{\sqrt[]{x^2+x+2}+2}-\dfrac{7\left(x-1\right)}{4+2\sqrt[3]{7x+1}+\sqrt[3]{\left(7x+1\right)^2}}}{\sqrt[]{2}\left(x-1\right)}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{x+2}{\sqrt[]{x^2+x+2}+2}-\dfrac{7}{4+2\sqrt[3]{7x+1}+\sqrt[3]{\left(7x+1\right)^2}}}{\sqrt[]{2}}=...\)

Nguyễn Việt Lâm
3 tháng 4 2021 lúc 22:44

\(A_1=2\)

Ta có:

\(u_n=-u_{n-1}-2u_{n-2}\Rightarrow u_{n+1}=-u_n-2u_{n-1}\)

\(\Rightarrow u_{n+1}+\dfrac{1}{2}u_n=-\dfrac{1}{2}u_n-2u_{n-1}\)

Bình phương 2 vế:

\(\Rightarrow u_{n+1}^2+u_nu_{n+1}+\dfrac{1}{4}u_n^2=\dfrac{1}{4}u_n^2+2u_nu_{n-1}+4u_{n-1}^2\)

\(\Rightarrow u_{n+1}^2+u_nu_{n+1}=2u_nu_{n-1}+4u_{n-1}^2\)

\(\Rightarrow A_n=2u_n^2+2u_nu_{n-1}+4u_{n-1}^2\)

\(\Rightarrow A_n=2\left(2u_{n-1}^2+u_{n-1}u_n+u_n^2\right)=2A_{n-1}\)

\(\Rightarrow A_n\) là CSN với công bội 2

\(\Rightarrow A_n=2.2^{n-1}=2^n\)

\(\Rightarrow\lim\left(\dfrac{A_n}{2020^n}\right)=\lim\left(\dfrac{2}{2020}\right)^n=0\)

Nguyễn Mai Khánh Huyề...
Xem chi tiết
Hoàng Tử Hà
20 tháng 4 2021 lúc 19:46

Kẻ MK vuông góc AC

\(\left\{{}\begin{matrix}MK\perp AC\subset\left(SAC\right)\\MK\perp SA\subset\left(SAC\right)\end{matrix}\right.\Rightarrow MK\perp\left(SAC\right)\)

\(\Rightarrow d\left(M,\left(SAC\right)\right)=KM=\dfrac{1}{2}AB=\dfrac{1}{2}\sqrt{16a^2-4a^2}=a\sqrt{3}\)

trần khánh dương
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 4 2021 lúc 22:49

Trong mp (SAB), từ M kẻ \(MP\perp SB\)

Ta có: \(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AB\perp BC\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp MP\)

\(\Rightarrow MP\perp\left(SBC\right)\Rightarrow MP\in\left(\alpha\right)\)

Trong mp (SBC), qua P kẻ đường thẳng song song MN cắt SC tại Q

\(\Rightarrow NMPQ\) là thiết diện của \(\left(\alpha\right)\) và chóp

\(MN||BC\) (đường trung bình), mà \(BC\perp\left(SAB\right)\Rightarrow MN\perp\left(SAB\right)\Rightarrow MN\perp MP\)

\(\Rightarrow\) Thiết diện là hình thang vuông tại M và P

Từ A kẻ \(AH\perp SB\Rightarrow\) MP là đường trung bình tam giác ABH \(\Rightarrow MP=\dfrac{1}{2}AH\)

Tam giác SAB vuông cân tại A \(\Rightarrow AH=\dfrac{1}{2}SB=\dfrac{1}{2}\sqrt{SA^2+AB^2}=\dfrac{a\sqrt{2}}{2}\Rightarrow MP=\dfrac{a\sqrt{2}}{4}\)

\(MN=\dfrac{BC}{2}=\dfrac{a}{2}\)

\(\dfrac{BP}{BH}=\dfrac{MP}{AH}=\dfrac{1}{2}\Rightarrow BP=\dfrac{1}{2}BH=\dfrac{1}{4}SB\Rightarrow SP=\dfrac{3}{4}SB\)

Talet: \(\dfrac{PQ}{BC}=\dfrac{SP}{SB}=\dfrac{3}{4}\Rightarrow PQ=\dfrac{3}{4}BC=\dfrac{3a}{4}\)

\(S_{NMPQ}=\dfrac{1}{2}MP.\left(MN+PQ\right)=...\)

dung doan
Xem chi tiết
Lê Ng Hải Anh
30 tháng 4 2021 lúc 8:33

undefined

dung doan
Xem chi tiết
Trương Thị Anh Quỳnh
30 tháng 4 2021 lúc 2:00

hình như đề bài bị sai phải k bạn ??

 

Thanh Yến
Xem chi tiết
Ngô Chí Thành
Xem chi tiết
Hoàng Tử Hà
18 tháng 5 2021 lúc 2:06

undefined

Nguyễn Việt Lâm
12 tháng 6 2021 lúc 22:48

\(SA\perp\left(ABCD\right)\Rightarrow\left\{{}\begin{matrix}SA\perp AB\\SA\perp AD\end{matrix}\right.\) \(\Rightarrow\) các tam giác SAB và SAD vuông

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp SB\Rightarrow\Delta SBC\) vuông

Tương tự ta có \(CD\perp\left(SAD\right)\Rightarrow CD\perp SD\Rightarrow\Delta SCD\) vuông

b/

Từ A kẻ \(AH\perp SC\Rightarrow H\in\left(\alpha\right)\)

Từ A kẻ \(AM\perp SB\Rightarrow AM\perp\left(SBC\right)\Rightarrow AM\perp SC\Rightarrow M\in\left(\alpha\right)\)

Từ A kẻ \(AN\perp SD\Rightarrow AN\perp\left(SCD\right)\Rightarrow AN\perp SC\Rightarrow N\in\left(\alpha\right)\)

\(\Rightarrow AMHN\) là thiết diện của chóp và \(\left(\alpha\right)\)