Bài 5: Khoảng cách

Nguyễn Việt Lâm
12 tháng 6 lúc 23:39

Dễ dàng chứng minh \(BD\perp\left(SAC\right)\Rightarrow BD\perp SC\)

Gọi O là tâm đáy, kẻ \(OH\perp SC\Rightarrow SC\perp\left(BDH\right)\)

\(\Rightarrow\widehat{BHD}\) hoặc góc bù của nó là góc giữa (SBC) và (SCD) \(\Rightarrow\widehat{BHD}=60^0\) hoặc \(120^0\)

\(\Rightarrow\widehat{BHO}\) bằng \(30^0\) hoặc \(60^0\)

Tam giác ABD đều \(\Rightarrow BD=a\) \(\Rightarrow OB=\dfrac{a}{2}\)

TH1: \(\widehat{BHO}=30^0\)

\(\Rightarrow OH=\dfrac{OB}{tan30^0}=\dfrac{a\sqrt{3}}{2}=OC\Rightarrow\Delta\) vuông OCH có cạnh huyền bằng cạnh góc vuông (loại)

TH2: \(\widehat{BHO}=60^0\Rightarrow OH=\dfrac{OB}{tan60^0}=\dfrac{a\sqrt{3}}{6}\)

\(\Rightarrow SA=AC.tan\widehat{SCA}=AC.\dfrac{OH}{\sqrt{OC^2-OH^2}}=\dfrac{a\sqrt{6}}{4}\)

Từ A kẻ \(AM\perp SB\Rightarrow AM\perp\left(SBC\right)\Rightarrow AM=d\left(A;\left(SBC\right)\right)\)

\(AD||BC\Rightarrow AD||\left(SBC\right)\Rightarrow d\left(BK;AD\right)=d\left(AD;\left(SBC\right)\right)=d\left(A;\left(SBC\right)\right)=AM\)

\(\dfrac{1}{AM^2}=\dfrac{1}{SA^2}+\dfrac{1}{AB^2}=\dfrac{11}{3a^2}\Rightarrow AM=\dfrac{a\sqrt{33}}{11}\)

Bình luận (0)
Khánh Đan
1 tháng 6 lúc 17:17

a, Ta có: \(\left\{{}\begin{matrix}AB\perp SA\left(do:SA\perp\left(ABCD\right)\right)\\AB\perp AD\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow AB\perp\left(SAD\right)\)

Từ C kẻ CH // AB  ⇒ CH ⊥ (SAD)

⇒ d (C, (SAD)) = CH = 2a

b, Ta có: \(\left(SAC\right)\cap\left(ABCD\right)=AC\)

Hạ DE ⊥ AC ⇒ DE ⊥ (SAC)

⇒ d(D, (SAC)) = DE

Ta có: AC = 2a√2, AH = HC 2a và HD = a

Xét tam giác HDC vuông tại H, có: \(DC=\sqrt{HD^2+HC^2}=a\sqrt{5}\)

Xét tam giác AHC vuông cân tại H, có: \(\widehat{HAC}=45^o=\widehat{DAE}\)

Xét tam giác ADE vuông tại E, có: \(DE=AD.sin\widehat{DAE}=\dfrac{3a\sqrt{2}}{2}\)

 

Bình luận (0)
hhy.
25 tháng 5 lúc 15:57

Cái chữ nhìn muốn lé mắt :v

4/ Để tìm \(d\left(S,\left(ABC\right)\right)\) , ta phải hạ được đường vuông góc từ S xuống mp ABC. Nhận thấy \(\left(SAB\right)\perp\left(ABC\right)\) nên ta sẽ nghĩ ngay đến việc hạ đường vuông góc từ S xuống AB. Bởi dựa vô định lý sau: Khi 2 mp vuông góc thì mọi đường thẳng thuộc mp này và vuông góc với giao tuyến 2 mp thì nó sẽ vuông góc với mp còn lại.

Nên từ S ta kẻ \(SH\perp AB;SH\cap AB=\left\{H\right\}\Rightarrow SH\perp\left(ABC\right)\)

\(\Rightarrow SH=d\left(S,\left(ABC\right)\right)\)

\(SH=\dfrac{AS.SB}{\sqrt{AS^2+SB^2}}=....\)

 

Bình luận (0)
hhy.
25 tháng 5 lúc 16:04

5/ tìm khoảng cách từ M đến mp ABC, nghĩa là tÌm khoảng cách từ M đến mp ABCD

\(SM\cap\left(ABCD\right)=\left\{D\right\}\Rightarrow\dfrac{d\left(S,\left(ABCD\right)\right)}{d\left(M,\left(ABCD\right)\right)}=\dfrac{DS}{DM}=2\)

Vì chóp SABCD đều nên SO sẽ chính là đường cao của chóp

\(\Rightarrow d\left(S,\left(ABCD\right)\right)=SO\)

\(\left(\left(SCD\right),\left(ABCD\right)\right)=\widehat{SNO}=60^0\Rightarrow SO=ON.\tan60^0=\dfrac{a}{2}.\sqrt{3}=\dfrac{a\sqrt{3}}{2}\)

\(\Rightarrow d\left(M,\left(ABCD\right)\right)=\dfrac{a\sqrt{3}}{2.2}=\dfrac{a\sqrt{3}}{4}\)

Bình luận (0)
Nguyễn Việt Lâm
23 tháng 5 lúc 12:27

Gọi H là hình chiếu của S lên đáy, từ H kẻ \(HM\perp CD\)

\(\Rightarrow CD\perp\left(SHM\right)\Rightarrow\widehat{SMH}\) là góc giữa (SCD) và (ABCD)

\(\Rightarrow\widehat{SMH}=60^0\)

Talet: \(\dfrac{HM}{AD}=\dfrac{CH}{AC}=\dfrac{3}{4}\Rightarrow HM=\dfrac{3a}{4}\)

\(\Rightarrow SH=HM.tan60^0=\dfrac{3a\sqrt{3}}{4}\)

Do \(AB||\left(SCD\right)\Rightarrow d\left(B;\left(SCD\right)\right)=d\left(A;\left(SCD\right)\right)\)

Mà \(AC=\dfrac{4}{3}HC\Rightarrow d\left(A;\left(SCD\right)\right)=\dfrac{4}{3}d\left(H;\left(SCD\right)\right)\)

Từ H kẻ \(HK\perp SM\Rightarrow HK\perp\left(SCD\right)\Rightarrow HK=d\left(H;\left(SCD\right)\right)\)

\(\dfrac{1}{HK^2}=\dfrac{1}{SH^2}+\dfrac{1}{HM^2}=\dfrac{64}{27a^2}\Rightarrow HK=\dfrac{3a\sqrt{3}}{8}\)

\(\Rightarrow d\left(B;\left(SCD\right)\right)=\dfrac{4}{3}HK=\dfrac{a\sqrt{3}}{2}\)

Bình luận (0)
Nguyễn Việt Lâm
23 tháng 5 lúc 12:32

b.

Ta có: \(\left\{{}\begin{matrix}SH\perp\left(ABCD\right)\Rightarrow SH\perp BD\\BD\perp AC\end{matrix}\right.\) \(\Rightarrow BD\perp\left(SAC\right)\)

Trong mp (SAC), từ H kẻ \(HI\perp SO\)

\(\Rightarrow HI\perp\left(SBD\right)\Rightarrow HI=d\left(H;\left(SBD\right)\right)\)

\(OH=\dfrac{1}{2}AO=\dfrac{1}{4}AC=\dfrac{a\sqrt{2}}{4}\)

\(\dfrac{1}{HI^2}=\dfrac{1}{OH^2}+\dfrac{1}{SH^2}=\dfrac{232}{27a^2}\Rightarrow HI=a\sqrt{\dfrac{27}{232}}\)

AH cắt (SBD) tại O, mà \(AO=2HO\Rightarrow d\left(A;\left(SBD\right)\right)=2d\left(H;\left(SBD\right)\right)=\dfrac{3a\sqrt{174}}{58}\)

Bình luận (0)
Nguyễn Việt Lâm
22 tháng 5 lúc 8:17

Gọi O là tâm đáy, M là trung điểm AB và H là hình chiếu vuông góc của S lên (ABCD)

\(\Rightarrow\) H trùng tâm của tam giác đều ABC đồng thời HM là trung tuyến (kiêm đường cao) của tam giác ABC

\(\widehat{DCH}=\widehat{ACH}+\widehat{ACD}=\dfrac{1}{2}\widehat{ACB}+\widehat{ACD}=\dfrac{1}{2}.60^0+60^0=90^0\)

\(\Rightarrow HC\perp CD\)

\(\Rightarrow CD\perp\left(SCH\right)\Rightarrow\widehat{SCH}\) là góc giữa (SCD) và (ABCD) \(\Rightarrow\widehat{SCH}=60^0\)

\(CH=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\Rightarrow SH=CH.tan60^0=a\)

\(AB||CD\Rightarrow AB||\left(SCD\right)\Rightarrow d\left(AB;SD\right)=d\left(AB;\left(SCD\right)\right)=d\left(M;\left(SCD\right)\right)\)

MH cắt (SCD) tại C, mà \(CM=\dfrac{3}{2}CH\Rightarrow d\left(M;\left(SCD\right)\right)=\dfrac{3}{2}d\left(H;\left(SCD\right)\right)\)

Trong tam giác vuông SCH, kẻ \(HK\perp SC\Rightarrow HK\perp\left(SCD\right)\Rightarrow HK=d\left(H;\left(SCD\right)\right)\)

\(\dfrac{1}{HK^2}=\dfrac{1}{SH^2}+\dfrac{1}{CH^2}=\dfrac{4}{3a^2}\Rightarrow HK=\dfrac{a\sqrt{3}}{2}\)

\(\Rightarrow d\left(AB;SD\right)=\dfrac{3a\sqrt{3}}{4}\)

Bình luận (0)
Etermintrude💫
5 tháng 5 lúc 22:55

undefined

Bình luận (2)
Nguyễn Việt Lâm
5 tháng 5 lúc 21:07

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\\BD\perp AC\left(\text{hai đường chéo hình thoi}\right)\end{matrix}\right.\)  \(\Rightarrow BD\perp\left(SAC\right)\)

Mà \(BD\in\left(SBD\right)\Rightarrow\left(SBD\right)\perp\left(SAC\right)\)

\(\widehat{D}=\widehat{B}=60^0\Rightarrow\Delta ACD\) đều 

Đường thẳng \(AO\) cắt (SCD) tại C, mà \(OC=\dfrac{1}{2}AC\Rightarrow d\left(O;\left(SCD\right)\right)=\dfrac{1}{2}d\left(A;\left(SCD\right)\right)\)

Gọi M là trung điểm CD \(\Rightarrow AM\perp CD\) (do tam giác ACD đều)

\(\Rightarrow CD\perp\left(SAM\right)\)

Từ A kẻ \(AH\perp SM\Rightarrow AH\perp\left(SCD\right)\Rightarrow AH=d\left(A;\left(SCD\right)\right)\)

\(AM=\dfrac{AD\sqrt{3}}{2}=?\) (đến đây thì nhận ra bạn chép đề bài thiếu, hình thoi chưa biết độ dài cạnh)

Áp dụng hệ thức lượng: \(\dfrac{1}{AH^2}=\dfrac{1}{SA^2}+\dfrac{1}{AM^2}\Rightarrow AH=\dfrac{SA.AM}{\sqrt{SA^2+AM^2}}=?\)

\(\Rightarrow d\left(O;\left(SCD\right)\right)=\dfrac{1}{2}AH=?\)

Bình luận (0)

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN