giúp mình bài này với mình đang cần gấp
1/ tìm nghiệm pt/bpt sau
a/ x2 + \(\sqrt[3]{x^4-x^2}\) =2x +1
b/ \(\begin{cases}2x^2-y^2=1\\x^2+xy=2\end{cases}\)
2/ hệ có nghiệm duy nhất khi a=
\(\begin{cases}x+y=6\\x^2+y^2=a\end{cases}\)
giúp mình bài này với mình đang cần gấp
1/ tìm nghiệm pt/bpt sau
a/ x2 + \(\sqrt[3]{x^4-x^2}\) =2x +1
b/ \(\begin{cases}2x^2-y^2=1\\x^2+xy=2\end{cases}\)
2/ hệ có nghiệm duy nhất khi a=
\(\begin{cases}x+y=6\\x^2+y^2=a\end{cases}\)
Giải hệ phương trình :
\(\begin{cases}2+9.3^{x^2-2y}=\left(2+9^{x^2-2y}\right).5^{2y-x^2+2}\\4^x+4=4x+4\sqrt{2y-2x+4}\end{cases}\)
\(\begin{cases}2+9.3^{x^2-2y}=\left(2+9^{x^2-2y}\right).5^{2y-x^2+2}\left(1\right)\\4^x+4=4x+4\sqrt{2y-2x+4}\left(2\right)\end{cases}\)
Điều kiện \(y-x+2\ge0\),đặt \(t=x^2-2y\)
(1) \(\Leftrightarrow2+3^{t+2}=\left(2+9^t\right).5^{2-t}\Leftrightarrow\frac{2+3^{t+2}}{5^{t+2}}=\frac{2+3^{2t}}{5^{2t}}\Leftrightarrow f\left(t+2\right)=f\left(2t\right)\) (3)
Xét\(f\left(x\right)=\frac{2+3^X}{5^x}=2.\left(\frac{1}{5}\right)^x+\left(\frac{3}{5}\right)^x\) là hàm số nghịch biến trên R nên từ (3) suy ra t=2
\(\Leftrightarrow2y=x^2-2\)
Thế vào phương trình (2) : \(4^x+4=4x+4\sqrt{x^2-2x+2}\)
\(\Leftrightarrow4^{x-1}=x-1+\sqrt{\left(x-1\right)^2+1}\Leftrightarrow4^s=s+\sqrt{s^2+1}\left(4\right)\)
Do \(\left(s+\sqrt{s^2+1}\right)\left(\sqrt{s^2+1}-s\right)=1\) nên \(4^{-s}=\sqrt{s^2+1}-s\left(5\right)\)
(4) trừ (5) ta có \(4^s-4^{-s}-2s=0\) (*)
\(f\left(x\right)=4^x-4^{-x}-2x\rightarrow f'\left(x\right)=4\ln\left(4^x+4^{-x}\right)-2\ge2\ln4-2>0\)
s=0 là nghiệm duy nhất của phương trình (*) từ đó hệ có nghiệm \(\left(x;y\right)=\left(1;-\frac{1}{2}\right)\)
Cho 3 số thực dương x,y,z thỏa mãn x+y+z=1. Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{x}{x+yz}+\frac{y}{y+zx}+\frac{z^2+2}{z+xy}\)
Theo giả thiết ta có : \(x+yz=yz-z-1=\left(z-1\right)\left(y+1\right)=\left(x+y\right)\left(y+1\right)\)
Tương tự : \(y+zx=\left(x+y\right)\left(x+1\right)\)
Và \(z+xy=\left(x+1\right)\left(y+1\right)\)
Nên \(P=\frac{x}{\left(x+y\right)\left(y+1\right)}+\frac{y}{\left(x+y\right)\left(x+1\right)}+\frac{z^2+2}{\left(x+1\right)\left(y+1\right)}\)
\(=\frac{x^2+y^2+x+y}{\left(x+y\right)\left(x+1\right)\left(y+1\right)}+\frac{z^2+2}{\left(x+1\right)\left(y+1\right)}\)
Ta có \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\left(x+1\right)\left(y+1\right)\le\frac{\left(x+y+2\right)^2}{4}\)
nên \(P\ge\frac{2\left(x+y\right)^2+4\left(x+y\right)}{\left(x+y+2\right)^2\left(x+y\right)}+\frac{4\left(z^2+2\right)}{\left(x+y+2\right)^2}=\frac{2\left(x+y\right)+4}{\left(x+y+2\right)^2}+\frac{4\left(z^2+2\right)}{\left(x+y+2\right)^2}\)
\(=\frac{2}{z+1}+\frac{4\left(z^2+2\right)}{\left(z+1\right)^2}=f\left(z\right);z>1\)
Lập bảng biến thiên ta được \(f\left(z\right)\ge\frac{13}{4}\) hay min \(P=\frac{13}{4}\) khi \(\begin{cases}z=3\\x=y=1\end{cases}\)
Tìm giá trị lớn nhất của biểu thức
A=(x(2y-4)+y(2x-4))/xy
giá trị lớn nhất của biểu thức : (x.căn(2y-4)+y.căn(2x-4))/xy với x và y biến đổi
\(\frac{x\sqrt{2y-4}+y\sqrt{2x-4}}{xy}\le\frac{\frac{x\left(2y-4+1\right)}{2}+\frac{y\left(2x-4\right)}{2}}{xy}\)
=\(\frac{2xy-3x+2xy-3y}{2xy}=\frac{4xy}{2xy}-\frac{3\left(x+y\right)}{2xy}\)
\(\le2-\frac{3\left(x+y\right)}{2\left(x+y\right)}=2-\frac{3}{2}\)=1
dùng cosi nha
bn thấy bao nhiêu khuôn mặt trong tấm hình này
ảnh hơi mờ nên mình cũng không nhìn rõ
chào mọi người
Giải bài toán bằng cách lập phương trình:
Hai xe khách khởi hành cùng 1 lúc từ 2 địa điểm A và B cách nhau 140 km, đi ngược chiều nhau và sau 2 giờ chúng gặp nhau. Tính vận tốc mỗi xe biết xe đi từ A có vận tốc lớn hơn xe đi từ B là 10 km?
Ai giải giúp mk đuy, mk tick choa :))
Tổng vận tốc của 2 xe là:
\(140:2=70\) (km/h)
Vận tốc của xe đi từ A là:
(70+10):2=40(km/h)
Vận tốc của xe đi từ b là:
40 - 10 = 30 (km/h)
Chọn mình nha
xe đi từ a 40 km / giờ
xe đi từ b 30km/giờ
Tổng vận tốc hai xe là:
140:2 = 70 ( km/ giờ )
Vận tốc xe đi từ A là :
( 70+10 ) : 2 = 40 ( km/ giờ )
Vận tốc xe đi từ B là :
70 - 40 = 30 ( km/giờ )
cho điểm a nằm trong góc nhọn xoy .Vẽ ah vuông góc ox ,trên tia đối tia Ha lấy điểm B sao cho HB=HA.vẽ Ak vuông góc với oy ,trên tia đối của tia KA lấy điểm c sao cho KC=Ka.Chứng Minh rằng :
a)OB=OC
b)Biết góc xOy=a,tính góc Boc
a: Xét ΔOAB có
OH là đường cao
OH là đường trung tuyến
Do đó: ΔAOB cân tại O
Suy ra: OA=OB(1)
Xét ΔOAC có
OK là đường cao
OK là đường trung tuyến
Do đó: ΔOAC cân tại O
Suy ra: OA=OC(2)
Từ (1) và (2) suy ra OB=OC
b: \(\widehat{BOC}=2\cdot\left(\widehat{AOH}+\widehat{AOK}\right)=2\cdot a\)
ai rảnh không nhắn tin với đi cho đỡ chán