Bài tập cuối chương 4

Bài tập 1 (SGK Chân trời sáng tạo - Tập 2 - Trang 28)

Hướng dẫn giải

Ta có \(\int {{x^4}dx}  = \frac{{{x^5}}}{5} + C\). Với \(C = 1\), ta sẽ thu được kết quả là hàm số ở đáp án C.

Vậy đáp án đúng là C.

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 2 (SGK Chân trời sáng tạo - Tập 2 - Trang 28)

Hướng dẫn giải

Ta có: \(\int {\frac{1}{{{x^2}}}dx}  = \int {{x^{ - 2}}dx}  = \frac{{{x^{ - 1}}}}{{ - 1}} + C = \frac{{ - 1}}{x} + C\)

Với \(C = 0\), ta sẽ thu được kết quả là hàm số ở đáp án B.

Vậy đáp án đúng là B.

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 3 (SGK Chân trời sáng tạo - Tập 2 - Trang 28)

Hướng dẫn giải

Ta có

\(\int {\left( {\cos x - 2\sin x} \right)dx}  = \int {\cos xdx}  - 2\int {\sin xdx}  = \sin x - 2\left( { - \cos x} \right) + C = \sin x + 2\cos x + C\)

Vậy đáp án đúng là A.

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 4 (SGK Chân trời sáng tạo - Tập 2 - Trang 28)

Hướng dẫn giải

Ta có

\(\int {{{\left( {x - \frac{1}{x}} \right)}^2}dx}  = \int {\left( {{x^2} - 2 + \frac{1}{{{x^2}}}} \right)dx}  = \int {{x^2}dx}  - 2\int {dx}  + \int {\frac{1}{{{x^2}}}dx}  = \frac{{{x^3}}}{3} - 2x - \frac{1}{x} + C\)

Vậy đáp án đúng là A.

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 5 (SGK Chân trời sáng tạo - Tập 2 - Trang 28)

Hướng dẫn giải

Ta có \(\int {{3^{2x}}dx}  = \int {{{\left( {{3^2}} \right)}^x}dx}  = \int {{9^x}dx}  = \frac{{{9^x}}}{{\ln 9}} + C\)

Vậy đáp án đúng là A.

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 6 (SGK Chân trời sáng tạo - Tập 2 - Trang 28)

Hướng dẫn giải

Ta có:

\(\int\limits_{ - 2}^1 {\left( {4{x^3} + 3{x^2} + 8x} \right)dx}  + \int\limits_1^2 {\left( {4{x^3} + 3{x^2} + 8x} \right)dx}  = \int\limits_{ - 2}^2 {\left( {4{x^3} + 3{x^2} + 8x} \right)dx} \)

\( = \left. {\left( {{x^4} + {x^3} + 4{x^2}} \right)} \right|_{ - 2}^2 = 40 - 24 = 16\)

Vậy đáp án đúng là A.

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 7 (SGK Chân trời sáng tạo - Tập 2 - Trang 28)

Hướng dẫn giải

Ta có \(\int\limits_0^2 {\left[ {3x - 2f\left( x \right)} \right]dx}  = \int\limits_0^2 {3xdx}  - 2\int\limits_0^2 {f\left( x \right)dx}  = \left. {\left( {\frac{{3{x^2}}}{2}} \right)} \right|_0^2 - 2.4 = \left( {6 - 0} \right) - 8 =  - 2\)

Vậy đáp án đúng là A.

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 8 (SGK Chân trời sáng tạo - Tập 2 - Trang 28)

Hướng dẫn giải

Ta có \({x^2} - x = 0 \Leftrightarrow x = 0\) hoặc \(x = 1\).

Như vậy,

\(\int\limits_0^2 {\left| {{x^2} - x} \right|dx}  = \int\limits_0^1 {\left| {{x^2} - x} \right|dx}  + \int\limits_1^2 {\left| {{x^2} - x} \right|dx}  = \left| {\int\limits_0^1 {\left( {{x^2} - x} \right)dx} } \right| + \left| {\int\limits_1^2 {\left( {{x^2} - x} \right)dx} } \right|\)

\( = \left| {\left. {\left( {\frac{{{x^3}}}{3} - \frac{{{x^2}}}{2}} \right)} \right|_0^1} \right| + \left| {\left. {\left( {\frac{{{x^3}}}{3} - \frac{{{x^2}}}{2}} \right)} \right|_1^2} \right| = \left| {\frac{{ - 1}}{6} - 0} \right| + \left| {\frac{2}{3} - \left( { - \frac{1}{6}} \right)} \right| = 1\)

Vậy đáp án đúng là B.

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 9 (SGK Chân trời sáng tạo - Tập 2 - Trang 28)

Hướng dẫn giải

Diện tích của hình phẳng giới hạn bởi đồ thị của hai hàm số \(y = {x^3}\), \(y = x\) và hai đường thẳng \(x = 0\), \(x = 2\) là \(S = \int\limits_0^2 {\left| {{x^3} - x} \right|dx} \).

Ta có \({x^3} - x = 0 \Leftrightarrow x = 0\) hoặc \(x =  \pm 1\). Do đó:

\(S = \int\limits_0^1 {\left| {{x^3} - x} \right|dx}  + \int\limits_1^2 {\left| {{x^3} - x} \right|dx}  = \left| {\int\limits_0^1 {\left( {{x^3} - x} \right)dx} } \right| + \left| {\int\limits_1^2 {\left( {{x^3} - x} \right)dx} } \right| = \left| {\left. {\left( {\frac{{{x^4}}}{4} - \frac{{{x^2}}}{2}} \right)} \right|_0^1} \right| + \left| {\left. {\left( {\frac{{{x^4}}}{4} - \frac{{{x^2}}}{2}} \right)} \right|_1^2} \right|\)

\( = \left| { - \frac{1}{4}} \right| + \left| {\frac{9}{4}} \right| = \frac{5}{2}\)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 10 (SGK Chân trời sáng tạo - Tập 2 - Trang 29)

Hướng dẫn giải

Đồ thị hàm số \(v\left( t \right)\) được chia thành 3 đường thằng \(OA\), \(AB\), \(BC\) như hình dưới đây.

 

Đường thẳng \(OA\) đi qua \(O\left( {0;0} \right)\) và \(A\left( {8;10} \right)\) nên phương trình đường thẳng \(OA\) là \(v = \frac{5}{4}t\).

Đường thẳng \(AB\) đi qua \(A\left( {8;10} \right)\) và \(B\left( {30;10} \right)\) nên phương trình đường thẳng \(AB\) là \(v = 10\).

Đường thẳng \(BC\) đi qua \(B\left( {30;10} \right)\) và \(C\left( {40;0} \right)\) nên phương trình đường thẳng \(BC\) là \(v =  - t + 40\).

Vậy \(v\left( t \right) = \left\{ \begin{array}{l}\frac{5}{4}t{\rm{            }}\left( {0 \le t \le 8} \right)\\10{\rm{            }}\left( {8 \le t \le 30} \right)\\ - t + 40{\rm{  }}\left( {30 \le t \le 40} \right)\end{array} \right.\).

Do đó, quãng đường ca nô đi được trong 40 giây là

\(s = \int\limits_0^{40} {v\left( t \right)dt}  = \int\limits_0^8 {v\left( t \right)dt}  + \int\limits_8^{30} {v\left( t \right)dt}  + \int\limits_{30}^{40} {v\left( t \right)dt}  = \int\limits_0^8 {\frac{5}{4}tdt}  + \int\limits_8^{30} {10dt}  + \int\limits_{30}^{40} {\left( { - t + 40} \right)dt} \)

\( = \frac{5}{4}\left. {\left( {\frac{{{t^2}}}{2}} \right)} \right|_0^8 + 10\left. {\left( t \right)} \right|_8^{30} + \left. {\left( { - \frac{{{t^2}}}{2} + 40t} \right)} \right|_{30}^{40} = \frac{5}{4}.32 + 10.22 + 50 = 310\) (m).

Đáp án đúng là C

(Trả lời bởi datcoder)
Thảo luận (1)