Tính đạo hàm của hàm số sau:
a) \(y=ln\left(1+\sqrt{3x-1}\right)\)
b) \(y=log\left(2sin^2x-1\right)\)
c) \(y=3^{x^3+3x+1}e^x\)
Bài tập 2: Tính đạo hàm của các hàm số:
a, y = 2\(xe^x\) + 3sin2x b, y = \(5x^2\) - \(2^x\)cosx
c, y = \(\frac{x+1}{3^x}\)
Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ (dưới bình luận). Tìm tất cả các giá trị của tham số m để hàm số y= \(\left|f^2\left(x\right)-4f\left(x\right)+m\right|\) có 7 điểm cực trị (giải theo phương pháp ghép trục)
Hàm số y = log2( 4x- 2x+ m) có tập xác định D= R khi nào?
Tìm TXĐ:
a) y=\(\left(1-x\right)^{\dfrac{-1}{3}}\)
b) \(y=\sqrt{\log_{0,5}\dfrac{2x+1}{x+5}-2}\)
c) \(y=\log_{10}\sqrt{x^2-x-12}\)
d) \(y=\sqrt{\log_{10}x-1+\log_{10}x+1}\)
Cho \(\left\{{}\begin{matrix}x;y;z>=0\\x+y+z=2\end{matrix}\right.\) CMR \(\dfrac{1}{x^2-xy+y^2}+\dfrac{1}{y^2-yz+z^2}+\dfrac{1}{z^2-xz+x^2}\ge3\)
Có bao nhiêu cặp số nguyên (x,y) thoả mãn 2<x<20210 và log2(x+2^y-1) -2^y= y-2x
Bài 1: Cho a, b, c > 1. CMR: \(a^{\log_bc}+b^{\log_ca}+c^{\log_ab}\ge3\sqrt[3]{abc}\)
Bài 2: Cho các số x, y, z > 0 thoả mãn: \(\dfrac{x\left(y+z-x\right)}{logx}=\dfrac{y\left(z+x-y\right)}{logy}=\dfrac{z\left(x+y-z\right)}{logz}\). CMR: xy.yx = yz.zy = xz.zx
70. Cho 2 số dương x và y thỏa mãn log2(x+1) + log2(y+1) ≥ 6. Giá trị nhỏ nhất của S = x + y ?