Đề là \(log_2\left(x+2^{y-1}\right)-2^y=y-2x\) đúng ko nhỉ?
Đặt \(log_2\left(x+2^{y-1}\right)=z>0\)
\(\Rightarrow x+2^{y-1}=2^z\)
Ta được: \(\left\{{}\begin{matrix}z-2^y=y-2x\\x+2^{y-1}=2^z\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}z-2^y=y-2x\\2.2^z=2x+2^y\end{matrix}\right.\)
Cộng vế: \(\Rightarrow2^{z+1}+z=2^{y+1}+y\)
Hàm \(f\left(t\right)=2^{t+1}+t\) có \(f'\left(t\right)=2^{t+1}.ln2+1>0\) nên đồng biến trên miền xác định
\(\Rightarrow z=y\)
Thế vào \(z-2^y=y-2x\Rightarrow y-2^y=y-2x\)
\(\Rightarrow2^y=2x\Rightarrow y=log_2\left(2x\right)\)
Ứng với mỗi giá trị của x cho đúng 1 giá trị của y và ngược lại
Do \(2< x< 20210\Rightarrow2< y< log_2\left(2.20210\right)\approx15,1\)
\(\Rightarrow y=\left\{3;4;5;...;15\right\}\) có 13 giá trị nên có 13 cặp thỏa mãn