Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen ngoc son

x+y+z+8=2\(\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)

Tuấn IQ 3000
4 tháng 9 2021 lúc 15:50

tham khảo:

x+y+z+8=2√x−1+4√y−2+6√z−3a)x+y+z+8=2x-1+4y-2+6z-3 ĐK: x≥1;y≥2;z≥3x≥1;y≥2;z≥3

⇔x+y+z+8−2√x−1−4√y−2−6√z−3=0⇔x+y+z+8-2x-1-4y-2-6z-3=0

⇔(x−1−2√x−1+1)+(y−2−4√y−2+4)+(z−3−6√z−3+9)=0⇔(x-1-2x-1+1)+(y-2-4y-2+4)+(z-3-6z-3+9)=0

⇔(√x−1−1)2+(√y−2−2)2+(√z−3−3)2=0⇔(x-1-1)2+(y-2-2)2+(z-3-3)2=0

Do (√x−1−1)2≥0;(√y−2−2)2≥0;(√z−3−3)2≥0(x-1-1)2≥0;(y-2-2)2≥0;(z-3-3)2≥0

⇒(√x−1−1)2+(√y−2−2)2+(√z−3−3)2≥0⇒(x-1-1)2+(y-2-2)2+(z-3-3)2≥0

Dấu = xảy ra khi ⎧⎪ ⎪⎨⎪ ⎪⎩√x−1=1√y−2=2√z−3=3⇔⎧⎪⎨⎪⎩x−1=1y−2=4z−3=9⇔⎧⎪⎨⎪⎩x=2(tm)y=6(tm)z=12(tm){x-1=1y-2=2z-3=3⇔{x-1=1y-2=4z-3=9⇔{x=2(tm)y=6(tm)z=12(tm)

Vậy (x;y;z)=(2;6;12)

Hồng Phúc
4 tháng 9 2021 lúc 16:03

ĐK: \(x\ge1;y\ge2;z\ge3\)

\(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\y-2=4\\z-3=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\left(tm\right)\\y=6\left(tm\right)\\z=12\left(tm\right)\end{matrix}\right.\)


Các câu hỏi tương tự
nguyen ngoc son
Xem chi tiết
Vịtt Tên Hiền
Xem chi tiết
Phương Thảo
Xem chi tiết
ngọc linh
Xem chi tiết
Komorebi
Xem chi tiết
nho quả
Xem chi tiết
Quỳnh Hoa Lenka
Xem chi tiết
Trịnh Minh Tuấn
Xem chi tiết
Trịnh Minh Tuấn
Xem chi tiết