Khai triển VT ta có :
\(\left(x+y\right)^2-4xy\)
\(=x^2+2xy+y^2-4xy\)
\(=x^2-2xy+y^2\)
\(=\left(x-y\right)^2\)
Vậy \(\left(x+y\right)^2-4xy=\left(x-y\right)^2\) ( đpcm )
Khai triển VT ta có :
\(\left(x+y\right)^2-4xy\)
\(=x^2+2xy+y^2-4xy\)
\(=x^2-2xy+y^2\)
\(=\left(x-y\right)^2\)
Vậy \(\left(x+y\right)^2-4xy=\left(x-y\right)^2\) ( đpcm )
Cho x, y > 0, x + y = 1. Tính GTNN của P = \(\frac{1}{x^2+y^2}+\frac{3}{4xy}+4xy\)
I : Tìm x , y
a) x^2+y^2-2x+4y+5=0
b) 4x^2+y^2-4x-6x+10=0
c) 5x^2-4xy+y^2-4x+4=0
d)2x^2-4xy+4y^2-10x+25=0
help me
A=x2-25/x3-10x2+25:y-2/y2-y-2 biết x2+9y2+4xy=2xy-xy-|x-3|
rút gọn biểu thức
A= \(\left(\frac{1}{x^2+2xy+y^2}-\frac{1}{x^2-y^2}\right):\frac{4xy}{y^2-x^2}\)
Rút gọn biểu thức:
\(A=\left[\dfrac{1}{x^2+2xy+y^2}-\dfrac{1}{x^2-y^2}\right]:\dfrac{4xy}{y^2-x^2}\)
Tìm x,y ∈ Z biết
a. 5(x2-xy+y2)=7(x+y)
b. x2-4xy+5y2=2(x-y)
c. 2x2+y2+3xy-3x+2y+2=0
Phân tích đa thức thành nhân tử:
a) 2x2y2 - 4/3 x2y + 2xy
b) 2xy2.(x+5y) - 4xy(5y+x)
c) 25- 4x2- y2 + 4xy
d) x2 + 4x - 2xy - 4y +y2
e) 12y3 - 3x2y + 12xy - 12y
f) 64x4 + y 4
cho các số x,y thỏa mãn đẳng thức \(3x^2+3y^2+4xy+2x-2y+2=0\\ \)
tính giá trị biểu thức M=\(\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\)
20 Cho x+y=5. Tính giá trị của biểu thức :
a) P=3x^2-2x+3y^2-2y+6xy-100
b) Q=x^3+y^3-2x^2-2y^2+3xy(x+y)-4xy+3(x+y)+10