Xét xem các số a,b có thể là số vô tỉ hay không nếu :
a+b và \(\dfrac{a}{b}\) là các số hữu tỉ ( a , b ≠ 0 )
Cho a, b, c là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ
Cho a, b, c, d là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ
Cho a, b, c, d là các số hữu tỉ khác 0 thỏa mãn: a+b+c+d=0. CMR: \(A=\sqrt{\left(ab-cd\right).\left(bc-da\right).\left(ca-bd\right)}\) là số hữu tỉ
Số vô tỉ cộng số hữu tỉ ra :
a) Vô tỉ b) Hữu tỉ
c) Số thực c) Đáp án khác
Cho a,b,c là các số hữu tỉ khác 0 thỏa mãn điều kiện a=b+c
Chứng minh rằng \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\) là một số hữu tỉ
Cho a.b,c là số hữu tỉ t/m abc=1 và \(\dfrac{a}{b^2}+\dfrac{b}{c^2}+\dfrac{c}{a^2}=\dfrac{a^2}{c}+\dfrac{b^2}{a}+\dfrac{c^2}{b}\).
C/m ít nhẩ một trong 3 số a,b,c là bình phương của một số hữu tỉ.
Cho a, b, là số hữu tỉ thỏa mãn: \(\left(a^2+b^2-2\right).\left(a+b\right)^2+\left(1-ab\right)^2=-4ab\). CM: \(\sqrt{1+ab}\) là số hữu tỉ
Câu 1. Tìm giá trị nhỏ nhất của: với x, y, z > 0.
Câu 2. Tìm giá trị nhỏ nhất của: A = x2 + y2 biết x + y = 4.
Câu 3. Tìm giá trị lớn nhất của: A = xyz(x + y)(y + z)(z + x) với x, y, z ≥ 0; x + y + z = 1.
Câu 4. Xét xem các số a và b có thể là số vô tỉ không nếu:
a) ab và a/b là số vô tỉ.
b) a + b và a/b là số hữu tỉ (a + b ≠ 0)
c) a + b, a2 và b2 là số hữu tỉ (a + b ≠ 0)
Câu 5. Cho a, b, c > 0. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)
Câu 6. Cho a, b, c, d > 0. Chứng minh:
Câu 7. Chứng minh rằng [2x] bằng 2[x] hoặc 2[x] + 1