xét tính đồng biến nghịch biến của các hàm số trên
\(y=f\left(x\right)=x^2-2x+3\) trên khoảng \(_{\left(1;+\infty\right)}\)
y=f(x)=\(\sqrt{3-x}\) trên khoảng \(\left(-\infty;3\right)\)
Bài 10. Xét tính đồng biến và nghịch biến của các hàm số sau trên các khoảng đã chỉ ra
a: \(f\left(x\right)=2x^2-4x+3\) trên các khoảng \(\left(3;+\infty\right)\) và (-10;1)
b: \(f\left(x\right)=-3x^2+6x+1\) trên các khoảng \(\left(1;+\infty\right)\) và (-10;-2)
c: \(f\left(x\right)=\dfrac{x}{x-2}\) trên khoảng \(\left(-\infty;2\right)\)
d: \(f\left(x\right)=-\dfrac{1}{x+1}\) trên các khoảng (-3;-2) và \(\left(-1;+\infty\right)\)
e: \(f\left(x\right)=x^{2020}+x^2-3\) trên khoảng \(\left(0;+\infty\right)\)
Xét tính biến thiên của hàm số sau f(x)= \(-x^2-6x-5\)
trên khoảng \(\left(-\infty;-3\right)\)
Khảo sát sự biến thiên của
1)y=f(x)=\(\dfrac{1}{1-x}\)trên \(\left(1;+\infty\right)\)
2)y=f(x)=\(\sqrt{x+4}+\sqrt{x+1}\)trên \(\left(4;+\infty\right)\)
3)y=f(x)=\(\left|2x-4\right|+x\) trên \(\left(-\infty;2\right)\)
Xét tính chẵn. lẻ của các hàm số sau:
1. y=x2
2. \(y=x^2+2|x|+1\)
3. y=\(\dfrac{1}{x^2-4}\)
4. \(y=x^3+3x\)
6. \(y=x^4+x^3+x\)
7. \(y=\dfrac{x}{\sqrt{4-x^2}}\)
Tính đồng biến nghịch biến của hàm số:
a) y= 7x-3 trên R
b) y= 2x2 trên (0; +\(\infty\))
c) y= x2-2x+3 trên ( 1; +\(\infty\))
d) y= \(\sqrt{x}\) trên (0; +\(\infty\))
xét tính chẵn lẻ của các hàm số sau:
a) g(x)= \(\sqrt{(x)^{4}-2x+3} - \sqrt{(x)^{4}+2x+3}\)
b) h(x)= \(\sqrt[3]{x+1} -\sqrt[3]{x-1} \)
Khảo sat sự biến thiên của hàm số: y=\(\sqrt{x-4}\) + \(\sqrt{x+1}\) trên khoảng (4;\(+\infty\))
Xác định giá trị của a để hàm số:
\(y=\sqrt{2x-3a+4}+\frac{x-a}{x+a-1}\)
Xác định trên \(D=\left(0;+\infty\right)\)