\(Đặt\ \dfrac{1}{a}=\dfrac{x}{y+z};\dfrac{1}{b}=\dfrac{y}{x+z};\dfrac{1}{c}=\dfrac{z}{x+y} (x,y,z>0) \\ Áp\ dụng\ BĐT\ AM - GM,\ ta\ có: \\\sum \dfrac{1}{a+b}=\sum\dfrac{1}{2}\sqrt{\dfrac{xy}{(y+z)(x+z)}}\le\sum\dfrac{1}{4}(\dfrac{x}{x+z}+\dfrac{y}{y+z})=\dfrac{3}{4} \\Đẳng\ thức\ xảy\ ra\ khi\ a=b=c=2.\)