a: \(\Leftrightarrow a\cdot x^3+b\cdot x^2+ac\cdot x^2+b\cdot cx+2ax+2b=x^3+x^2-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b+ac=1\\bc+2a=0\\2b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-1\\c=2\\-1\cdot2+2\cdot1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-1\\c=2\end{matrix}\right.\)
b: \(\left(z^2-z+1\right)\left(az^2+bz+c\right)\)
\(=az^4+bz^3+cz^2-az^3-bz^2-cz+az^2+bz+c\)
\(=az^4+z^3\left(b-a\right)+z^2\left(c-b+a\right)+z\left(-c+b\right)+c\)
Theo đề, ta có: a=2; \(\left\{{}\begin{matrix}b-a=-1\\c-b+a=2\\-c+b=0\\c=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-1+a=-1+2=1\\c=2+b-a=2+1-2=1\\1-1=0\\c=1\end{matrix}\right.\)
=>a=2; b=1; c=1