Cách nêu tính chất đặc trưng:
A=\(\left\{x/\left(x^2+2x-3\right)\left(x^2-13x+42\right)\right\}\)
B=\(\left\{\frac{2x+1}{2^{x+1}},x\in N,0\le x\le4\right\}\)
Cách nêu tính chất đặc trưng:
A=\(\left\{x/\left(x^2+2x-3\right)\left(x^2-13x+42\right)\right\}\)
B=\(\left\{\frac{2x+1}{2^{x+1}},x\in N,0\le x\le4\right\}\)
tính
a)A= \(sin^2\frac{\pi}{3}+sin^2\frac{\pi}{9}+sin^2\frac{7\pi}{18}+sin^2\frac{\pi}{6}\)
b) B= \(sin^2\frac{\pi}{6}+sin^2\frac{\pi}{3}+sin^2\frac{\pi}{4}+sin^2\frac{9\pi}{4}+tan\frac{\pi}{6}.cot\frac{\pi}{6}\)
c) C= \(cos^215+cos^225+cos^235+cos^245+cos^2105+cos^2115+cos^2125\)
Nếu biết \(\frac{sin^4a}{a}+\frac{cos^4a}{b}=\frac{1}{a+b}\) thì biểu thức \(M=\frac{sin^{10}a}{a^4}+\frac{cos^{10}a}{b^4}\) bằng
A. \(\frac{1}{\left(a+b\right)^5}\)
B. \(\frac{1}{a^5}+\frac{1}{b^5}\)
C. \(\frac{1}{a^4}+\frac{1}{b^4}\)
D. \(\frac{1}{\left(a+b\right)^4}\)
Giúp em với , em kém lượng giác lắm ;; ;;
Tính giá trị biểu thức
a) A= \(sin^2\frac{\pi}{3}+sin^2\frac{\pi}{9}+sin^2\frac{7\pi}{18}+sin^2\frac{\pi}{6}\)
b) B= \(sin^2\frac{\pi}{6}+sin^2\frac{\pi}{3}+sin^2\frac{\pi}{4}+sin^2\frac{9\pi}{4}+tan\frac{\pi}{6}.cot\frac{\pi}{6}\)
c) C= \(cos^215+cos^225+cos^235+cos^245+cos^2105+cos^2115+cos^2125\)
Gía trị của :\(\cos\left[\frac{\pi}{3}+\left(2k+1\right)\pi\right]\) bằng:( nêu cách làm)
A.\(-\frac{\sqrt{3}}{2}\) B. \(\frac{1}{2}\) C.\(-\frac{1}{2}\) D.\(\frac{\sqrt{3}}{2}\)
Chứng minh|
a) \(\frac{1+sin2x}{sinx+cosx}-\frac{1-tan^2\frac{x}{2}}{1+tan^2\frac{x}{2}}=sinx\)
b) \(sin^4x+cos^4\left(x+\frac{\pi}{4}\right)=\frac{3}{4}-\frac{\sqrt{2}}{2}sin\left(2x+\frac{\pi}{4}\right)\)
Bài 1 :Chứng minh đẳng thức :
a. \(\frac{1-2sin^2x}{1-tanx}=\frac{1+sin2x}{1+tanx}\)
b. \(\frac{cot^2\frac{x}{2}-cot^2\frac{3x}{2}}{cos^2\frac{x}{2}.cosx.\left(1+cot^2\frac{3x}{2}\right)}=8\)
Bài 2:Cho sin(2a+b) = 5sinb . CMR: \(\frac{2tan\left(a+b\right)}{tana}=3\)
Chứng minh
a) \(sin^4x=\frac{3}{8}-\frac{1}{2}cos2x+\frac{1}{8}cos4x\)
b) \(\frac{cos\left(a+b\right)cos\left(a-b\right)}{cos^2a.cos^2b}=1-tan^2a.tan^2b\)
Giaỉ phương trình: \(\left\{{}\begin{matrix}\frac{1}{x-1}-\frac{8}{y}=4\\\frac{5}{x-1}+\frac{4}{y}=4\end{matrix}\right.\)
Chứng minh các đẳng thức sau:
1/ \(sin^6\alpha+cos^6\alpha=\frac{5}{8}+\frac{3}{8}cos4\alpha\)
2/\(\frac{1+sin2\alpha-cos2\alpha}{1+cos2\alpha}=tan\alpha+tan^2\alpha\)