\(f\left(x\right)=-x-7x^2+6x^3-3x^4-2x^2-6x+2x^4-1\)
\(f\left(x\right)=-x^4+6x^3-9x^2-7x-1\)
\(\Rightarrow\) Bậc của đa thức là \(4\), hệ số tự do là \(-1\), hệ số cao nhất của đa thức là \(-1\).
Thu gọn rồi tìm động não chút đi bn
\(f\left(x\right)=ax^3+4x\left(x^2-x\right)-4x+8=ax^3+4x^3-4x^2-4x+8=\left(a+4\right)x^3-4x^2-4x+8\)\(g\left(x\right)=x^3-4x\left(bx+1\right)+c-3=x^3-4bx^2-4x+c-3\)
Để \(f\left(x\right)=g\left(x\right)\) thì \(a+4=1,4b=4,c-3=8\) được \(a=-3,b=1,c=11\)
Vậy \(a=-3,b=1,c=11\)