Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Duong Thi Nhuong

Xác định a, b, c biết \(2x^4+ax^2+bx+c\) chia hết cho (x - 2) còn chia \(\left(x^2-1\right)\) dư 2x

Mỹ Duyên
17 tháng 6 2017 lúc 14:24

Đặt f(x) = \(2x^4+ax^2+bx+c\)

Áp dụng định lí Be - du ta có: r = f(x)

=> \(\left\{{}\begin{matrix}r=f\left(2\right)\\r=f\left(1\right)\\r=f\left(-1\right)\end{matrix}\right.\)

Thay x = 2; 1; -1 lần lượt vào f(x) ta được:

\(\left\{{}\begin{matrix}f\left(2\right)=32+4a+2b+c\\f\left(1\right)=2+a+b+c\\f\left(-1\right)=2+a-b+c\end{matrix}\right.\)

\(\left\{{}\begin{matrix}f\left(x\right)⋮\left(x-2\right)\\f\left(x\right)chia\left(x^2-1\right)dư2x\end{matrix}\right.\) => \(\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=2\\2+a-b+c=-2\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=0\left(2\right)\\a-b+c=-4\left(3\right)\end{matrix}\right.\)

Trừ (2) cho (3) ta được: \(2b=4\) => b = 2

=> \(\left\{{}\begin{matrix}4a+c=-36\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)

Trừ (4) cho (5) ta được: \(3a=-34\) => a = \(\dfrac{-34}{3}\) => c = \(\dfrac{28}{3}\)

Vậy a = \(\dfrac{-34}{3}\) ; b = 2 ; c = \(\dfrac{28}{3}\)

P/s: Hi vọng bn hiểu!


Các câu hỏi tương tự
Thanh Vu
Xem chi tiết
Thanh Vu
Xem chi tiết
Bich Ngoc Nguyen
Xem chi tiết
Bánh Mì
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Bình Lê
Xem chi tiết
Luân Đào
Xem chi tiết
Quynh Existn
Xem chi tiết
Hoàng Linh Chi
Xem chi tiết