X^3-11x^2+30x=0
<=>x(x2-11x+30)=0
<=>x(x2-5x-6x+30)=0
<=>x[x(x-5)-6(x-5)]=0
<=>x(x-5)(x-6)=0
<=>x=0 hoặc x=5 hoặc x=6
\(x^3-11x^2+30x=0\)
\(\Rightarrow x\left(x^2-11x+30\right)=0\)
\(\Rightarrow x\left[\left(x^2-10x+25\right)-\left(x-5\right)\right]=0\)
\(\Rightarrow x\left[\left(x-5\right)^2-\left(x-5\right)\right]=0\)
\(\Rightarrow x\left(5-x\right)\left(x-5-1\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=5\\x=6\end{array}\right.\)
\(x^3-11x^2+30x=0\)
\(\Rightarrow x\left(x^2-11x+30\right)=0\)
\(\Rightarrow x\left[\left(x^2-10x+25\right)-\left(x-5\right)\right]=0\)
\(\Rightarrow x\left[\left(x-5\right)^2-\left(x-5\right)\right]=0\)
\(\Rightarrow x\left(5-x\right)\left(x-5-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-5=0\\x-5-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=5\\x=6\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=0\\x=5\\x=6\end{matrix}\right.\)