\(A=\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\Leftrightarrow\frac{1-x+3x+3-2x-3}{x+1}=\frac{1}{x+1}=0\)
Vô nghiệm.
\(B=\left(5,5-11x\right)\left(\frac{7x+2}{5}+\frac{2\left(1-3x\right)}{3}\right)=0\)
\(\left[\begin{matrix}5,5-11x=0\\3\left(7x+2\right)+10-30x=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=\frac{5,5}{11}\\-9x+16=0\end{matrix}\right.\)\(\left[\begin{matrix}x=\frac{1}{2}\\x=\frac{16}{9}\end{matrix}\right.\)
b) (5,5-11x)(\(\frac{7x+2}{5}\)+ \(\frac{2\left(1-3x\right)}{3}\)) = 0
<=> (5,5 - 11x )(\(\frac{-9x+16}{15}\))=0
<=>\(\left[\begin{matrix}5,5-11x=0\\\frac{-9x+16}{15}=0\end{matrix}\right.\)
<=> \(\left[\begin{matrix}x=\frac{1}{2}\\x=\frac{16}{9}\end{matrix}\right.\)
Vậy pt có nghiệm là x=\(\frac{1}{2}\) và x= \(\frac{16}{9}\)
a) \(\frac{1-x}{x+1}\)+ 3 = \(\frac{2x+3}{x+1}\)ĐKXĐ x\(\ne\)-1
<=> \(\frac{1-x+3x+3-2x-3}{x+1}\)
<=> \(\frac{1}{x+1}\)=0 ( vô lí )
Vậy pt vô nghiệm