cho x y z > 0,x+2y+3z=2. Tìm GTLN
S=\(\sqrt{\frac{xy}{xy+3z}}+\sqrt{\frac{3yz}{3yz+x}}+\sqrt{\frac{3xz}{3xz+4y}}\)
1) cho ba số thực dương x,y,z thõa mãn : x + 2y +3z = 2
Tìm giá trị lớn nhất của biểu thức :
S = \(\sqrt{\dfrac{xy}{xy+3z}}+\sqrt{\dfrac{3yz}{3yz+x}}+\sqrt{\dfrac{3xz}{3xz+4y}}\)
Cho 3 số thực không âm x, y,z thỏa mãn x + y + z = 3. Tìm min của
\(A=\sqrt{2x^2+3xy+2y^2}+\sqrt{2y^2+3yz+2z^2}+\sqrt{2z^2+3xz+2x^2}\)
cho x,y,z >0 và x+y+z=3. So sánh:
\(\frac{x}{x+\sqrt{3x+yz}}+\frac{y}{y+\sqrt{3y+xz}}+\frac{z}{z+\sqrt{3z+xy}}\) với 1
Cho 3 số thực dương thỏa mãn điều kiện \\(2\\sqrt{xy}+\\sqrt{xz}=1\\). CMR: \\(\\frac{3yz}{x}+\\frac{4xz}{y}+\\frac{5xy}{z}\\ge4\\)
\n(\(\frac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\frac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\))\(\div\)\(\frac{x+xy}{1-xy}\)
tìm điều kiện xác định và các bạn giải thích vì sao lại như vậy luôn nha
các bạn trả lời chi tiết hộ mình mình cảm ơn nhiều
Cho x,y,z>0 và xy+yz+xz = 3xyz . Tìm Max P = \(\Sigma\dfrac{1}{x+2y+3z}\)
Cho x,y,z là 3 số dương . Tìm Max của P=\(\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{xz}}{y+2\sqrt{xz}}+\frac{\sqrt{xy}}{z+2\sqrt{xy}}\)
Tìm Max của M=\(\sqrt{x-2}+\sqrt{y+4}\) biết x+y=8
Cho x,y,z là các số thực dương thỏa mãn đẳng thức xy+yz+zx=5. Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{3x+3y+3z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{6\left(z^2+5\right)}}\)