\(\Leftrightarrow x^2-4x=0\left(\left[{}\begin{matrix}x>=2\\x< =1\end{matrix}\right.\right)\)
=>x=4 hoặc x=0
\(\Leftrightarrow x^2-4x=0\left(\left[{}\begin{matrix}x>=2\\x< =1\end{matrix}\right.\right)\)
=>x=4 hoặc x=0
a,\(\sqrt{5X^2+X+3}-2\sqrt{5x-1}+X^2-3X+3=0\)
b,\(^{X^2-X-4+3X\sqrt{5-3X^2}=0}\)
giải pt
a) \(\sqrt{x^2+x+1}+\sqrt{3x^2+3x+2}=\sqrt{5x^2+5x-1}\)
b) \(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\)
c) \(\sqrt{3x^2-5x+7}+\sqrt{3x^2-7x+2}=3\)
d) \(\sqrt{x^2+3x+2}=\sqrt{2x^2+9x+7}-\sqrt{x^2+6x+5}\)
1. Giải các phương trình sau:
a)\(\sqrt[4]{x-\sqrt{x^2-1}}+\sqrt[]{x+\sqrt{x^2-1}}=2\)
b)\(x^2-x-\sqrt{x^2-x+13}=7\)
c)\(x^2+2\sqrt{x^2-3x+1}=3x+4\)
d)\(2x^2+5\sqrt{x^2+3x+5}=23-6x\)
e)\(\sqrt{x^2+2x}=-2x^2-4x+3\)
f)\(\sqrt{\left(x+1\right)\left(x+2\right)}=x^2+3x+4\)
2. Giải các bất phương trình sau:
1)\(\sqrt{x^2-4x+5}\ge2x^2-8x\)
2)\(2x^2+4x+3\sqrt{3-2x-x^2}>1\)
3)\(\dfrac{\sqrt{-3x+16x-5}}{x-1}\le2\)
4)\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}\ge2\sqrt{x^2-5x+4}\)
5)\(\dfrac{9x^2-4}{\sqrt{5x^2-1}}\le3x+2\)
Giải pt
a) \(2\sqrt[3]{x^2+5x-2}=x\left(x+5\right)+2\)
b) \(3x^2-12x-5\sqrt{10+4x-x^2}+12=0\)
c) \(\left(x+5\right)\left(2-x\right)=3\sqrt{x^2+3x}\)
d) \(\sqrt{3-x+x^2}-\sqrt{2+x-x^2=1}\)
e) \(\sqrt{x^2-3x+3}+\sqrt{x^2-3x+6}=3\)
Giải phương trình:
a) \(\sqrt{x+2}=\sqrt{2x+1}+x\sqrt{x+2}\)
b) \(2+\sqrt{3-8x}=6x+\sqrt{4x-1}\)
c) \(\sqrt{10x+1}+\sqrt{3x-5}=\sqrt{9x+4}+\sqrt{2x-1}\)
d) \(1+\sqrt{x^2+4x}=\sqrt{x^2-3x+3}+\sqrt{2x^2+x+2}\)
e) \(\sqrt{x^2+15}=3x-2+\sqrt{x^2+8}\)
f) \(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)
g) \(\sqrt{3x^2-7x+3}-\sqrt{x^2-2}=\sqrt{3x^2-5x-1}-\sqrt{x^2-3x+4}\)
h) \(\sqrt{2x^2+x-1}+\sqrt{3x^2+x-1}=\sqrt{x^2+4x-3}+\sqrt{2x^2+4x-3}\)
\(\sqrt{x^2+x+2}=\frac{3x^2+3x+2}{3x+1}\)
giải pt
a) \(x^2+2x+\left(x-2\right)\sqrt{x^2+2x-6}=6\)
b) \(x^3-7x\sqrt{x^2-x+2}=8-14\sqrt{x^2+2x-2}\)
c) \(\sqrt{\left(x^2+x\right)^2+2x^2+2x}=\left(3-x\right)\sqrt{x^2+x}\)
d) \(x^2+3x+3=3x\left(\sqrt{x^2+3x+4}+1\right)\)
e) \(2x^2-9x+1=2\left(\sqrt{3x^2-9x+1}+x\right)\)
Giải phương trình
\(-3x^2+x+3+\left(\sqrt{3x+2}-4\right)\sqrt{3x-2x^2}+\left(x-1\right)\sqrt{3x+2}=0\)
giải pt
a) \(\frac{3-2\sqrt{x^2+3x+2}}{1-2\sqrt{x^2-x+1}}=1\)
b) \(\sqrt{3x^2-5x+7}+\sqrt{3x^2-7x+2}=3\)
c) \(\sqrt{x^2+3x+2}+\sqrt{x^2+6x+5}=\sqrt{2x^2+9x+7}\)
d) \(\sqrt{x^2-1}-\sqrt{x^2+3}+\sqrt{5-x}=0\)
e) \(\left(x-1\right)\sqrt{1+x\sqrt{x^2+4}}=x^2-1\)
giải phương trình
a, \(\sqrt{1+x}-\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=3\)
b, \(\sqrt{3x^2+5x+8}-\sqrt{3x^2+5x+1}=1\)
c, \(2x^2+4x=\sqrt{\dfrac{x+3}{2}}\)
d, \(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)
e, \(729x^4+8\sqrt{1-x^2}=36\)
f, \(7x^2-10x+14=5\sqrt{x^4+4}\)
g, \(x^3+3x^2-3\sqrt[3]{3x+5}=1-3x\)
h, \(\sqrt{4-3\sqrt{10-3x}}=x-2\)
i, \(\sqrt{x-1}+\sqrt{x^2-1}=\sqrt{x^2-5x+4}\)