Áp dụng bất đẳng thức Cauchy ta được:
\(x+y\ge2\sqrt{xy},\frac{1}{x}+\frac{1}{y}\ge2\sqrt{\frac{1}{xy}}\)
Do đó \(\left(x+y\right)\left(\frac{1}{x}+\frac{1}{y}\right)\ge4\sqrt{xy}.\sqrt{\frac{1}{xy}}=4\)
\(\Leftrightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)
Đẳng thức xảy ra khi \(x=y\)