y=x-2+\(\frac{x}{4}\)-1
\(\Leftrightarrow\)y=\(\frac{5x}{4}\)-3
\(\Rightarrow\)y'=(\(\frac{5x}{4}\)-3)'
\(\Rightarrow\)y'=(\(\frac{5x}{4}\))'-3'
\(\Rightarrow\)y'=\(\frac{\left(5x\right)'\cdot4-5x\cdot4'}{4_{ }^2}\)
\(\Rightarrow\)y'=\(\frac{20}{16}\)=\(\frac{5}{4}\)
Vì tiếp tuyến song song với đường thẳng y=-3x+1 nên:
f\('\left(x_0\right)\)=y'=-3 nhưng trong trường hợp này thì y' là một hằng số nên f'\(\left(3\right)\)=\(\frac{5}{4}\)
\(\)\(y_0\)=\(\frac{5\cdot\frac{5}{4}}{4}-3\)
\(y_0\)=\(\frac{-23}{16}\)
Vậy điểm M(\(\frac{5}{4}\);\(\frac{-23}{16}\)) thuộc đường tiếp tuyến đã cho.
Ta có công thức đường tiếp tuyến là:
y=f\('\left(x_0\right)\)(x-\(x_0\))+\(y_0\)
\(\Rightarrow\)y=3(x-\(\frac{5}{4}\))+\(\frac{-23}{16}\)
\(\Rightarrow\)y=3x-\(\frac{83}{16}\)
\(y=x-2+\frac{4}{x-1}\Rightarrow y'=1-\frac{4}{\left(x-1\right)^2}\)
Gọi \(M\left(a;b\right)\) là điểm có tiếp tuyến song song với d
\(\Rightarrow y'\left(a\right)=-3\Leftrightarrow1-\frac{4}{\left(a-1\right)^2}=-3\)
\(\Leftrightarrow\left(a-1\right)^2=1\Rightarrow\left[{}\begin{matrix}a=0\Rightarrow b=-6\\a=2\Rightarrow b=4\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn:
\(\left[{}\begin{matrix}y=-3x-6\\y=-3\left(x-2\right)+4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}y=-3x-6\\y=-3x+10\end{matrix}\right.\)