Trong mặt phẳng Oxy cho elip (E) có tiêu điểm thứ nhất là \(\left(-\sqrt{3};0\right)\) và đi qua điểm \(M\left(1;\dfrac{\sqrt{3}}{2}\right)\)
a) Hãy xác định tọa độ các đỉnh của (E)
b) Viết phương trình chính tắc của (E)
c) Đường thẳng \(\Delta\) đi qua tiêu điểm thứ hai của elip (E) và vuông góc với trục Ox và cắt (E) tại hai điểm C và D. Tính độ dài đoạn thẳng CD ?
a) Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(P=3\cos2x+2\cos^2x\). Tính T=19M+5m
b) Viết phương trình chính tắc của elip đi qua điểm A(\(\left(2;\sqrt{3}\right)\) và tỉ số của độ dài trục lớn với tiêu cự bằng \(\dfrac{2}{\sqrt{3}}\)
Cho elip (E) đi qua điểm \(M\left(\dfrac{3}{\sqrt{5}};\dfrac{4}{\sqrt{5}}\right)\) và tam giác \(MF_1F_2\) vuông tại M ( \(F_1;F_2\) là hai tiêu điểm của elip)
a) Viết phương trình chính tắc của (E)
b) Tìm tiêu cự và tỉ số \(\dfrac{c}{a}\) của E
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) : \(\left(x-5\right)^2+\left(y-3\right)^2=4\) và điểm \(A\left(1;2\right)\), một đường thẳng d đi qua A và cắt đường tròn (C) theo một dây cung MN có độ dài bằng \(2\sqrt{3}\). Viết phương trình của d ?
Trong mặt phẳng tọa độ Oxy, lập phương trình chính rắc của elip (E) biết (E) có tiêu điểm \(F_1\left(-2;0\right)\) và diện tích hình chữ nhật cơ sở bằng \(12\sqrt{5}\). Viết phương trình đường tròn (C) có tâm là gốc tọa độ và (C) cắt (E) tại bốn điểm tạo thành một hình vuông ?
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) : \(\left(x-1\right)^2+\left(y-2\right)^2=4\) và hai điểm \(A\left(1;4\right);B\left(1;\dfrac{1}{2}\right)\). Viết phương trình đường thẳng d đi qua B cắt đường tròn (C) tại M, N sao cho tam giác AMN có diện tích lớn nhất
Cho đường tròn \(\left(C\right):\left(x+1\right)^2+\left(y-2\right)^2=25\) và điểm \(A\left(3;0\right)\). Viết phương trình đường thẳng \(\left(\Delta\right)\) qua \(A\) và cắt đường thẳng \(\left(C\right)\) theo dây cung \(MN\) sao cho:
a) \(MN\) lớn nhất
b) \(MN\) nhỏ nhất
Cho elip (E) có phương trình \(\dfrac{x^2}{16}+\dfrac{y^2}{9}=1\) và điểm \(A\left(1;2\right)\)
a) Tìm độ dài trục lớn, trục nhỏ và tiêu cự của (E)
b) Viết phương trình đường thẳng \(\Delta\) đi qua điểm A và cắt (E) tại \(M_1\) và \(M_2\) sao cho \(AM_1=AM_2\)
Phương trình chính tắc của (E) qua điểm \(A\left(4;\frac{15}{2}\right)\) và B(5;0) là