1. Cho tam giác ABC vuông tại A, phân giác BD. Gọi M,N,E lần lượt là trung điểm của BD, BC và DC.
a. C/m: MNED là hình bình hành
b. C/m: AMNE là hình thang cân
c. Tìm điều kiện của tam gáic ABC để MNED là hình thoi
2. Cho hình thang cân ABCD (AB//CD) có góc D=45 độ. Vẽ AH vuông góc với CD tại H. Lấy điểm E đối xứng với D qua H
a. C/m: ABCE là hình bình hành
b. Qua D vẽ đường thẳng song song với AE cắt AH tại F. C/m: H là trung điểm của AF
c. AEFD là hình gì ?
cho tam giác ABC có E,F,M lần lượt là trung điểm AB,AC,BC I là điểm đối xứng M qua E,K đối xứng M qua F a) chứng minh AEMF là hình bình hành b) ABC có thêm điều kiện gì để AEMF là hình chữ nhật c)chứng minh AMCK là hình bình hành d)tam giác ABC có thêm điều kiện gì để AMCK là hình chữ nhật e)chứng minh EK = BI f)chứng minh A là trung điểm IK
Cho hình bình hành ABCD (∠A < ∠B), trong đó có BC = 2AB. Gọi M là TĐ của BC, N là TĐ của AD.
a) C/m: BMDN là hbh.
b) Kẻ DE vuông góc vs AB tại E, DE cắt MN tại F. C/m: F là Tđ của DE.
c) C/m rằng: S Δ ABC = 2 S ΔBEM.
Cho tam giác ABC vuông tại A(AB>AC) có đường trung tuyến AM.Gọi D là điểm đối xứng với điểm M qua đường thẳng AB,E là điểm đối xứng với điểm C qua điểm Aa)Chứng minh tứ giác AMBD là hình thoib)Chứng minh tứ giác AMDE là hình bình hành và 3 điểm B,D,E thẳng hàngc)Kẻ AH⊥BE tại H.Gọi F là trung điểm của AH.Chứng minh BF⊥CH
Cho tam giác ABC vuông tại A(AB>AC) có đường trung tuyến AM.Gọi D là điểm đối xứng với điểm M qua đường thẳng AB,E là điểm đối xứng với điểm C qua điểm Aa)Chứng minh tứ giác AMBD là hình thoib)Chứng minh tứ giác AMDE là hình bình hành và 3 điểm B,D,E thẳng hàngc)Kẻ AH⊥BE tại H.Gọi F là trung điểm của AH.Chứng minh BF⊥CH
Cho tam giác ABC vuông tại A(AB>AC) có đường trung tuyến AM.Gọi D là điểm đối xứng với điểm M qua đường thẳng AB,E là điểm đối xứng với điểm C qua điểm Aa)Chứng minh tứ giác AMBD là hình thoib)Chứng minh tứ giác AMDE là hình bình hành và 3 điểm B,D,E thẳng hàngc)Kẻ AH⊥BE tại H.Gọi F là trung điểm của AH.Chứng minh BF⊥CH
Cho hình bình hành ABCD có E, F lần lượt là trung điểm của AB và CD. Gọi giao điểm của AC với DE và BF theo thứ tự là M và N
a) CM: các tứ giác DEBF, EMFN là hình bình hành
b) Hình bình hành ABCD cần thêm điều kiện gì để tứ giác MENF là hình thoi
Câu 4 :
1.Cho tam giác nhọn ABC ( AB < AC ) có hai đường cao BM và CN cắt nhau tại H . Đường thẳng vuông góc với AC tại C cắt đường thẳng vuông góc với AB tại B ở D
a, CHứng minh tứ giác BHCD là hình bình hành
b, Gọi O là trung điểm của đoạn thẳng AD . Qua điểm O kẻ đường thẳng vuông góc với AH cắt BC tại K . Chứng minh K là trung điểm của BC và tính độ dài đoạn thẳng OK biết AH=6cm
2.Cho tam giác ABC có các đường phân giác BD , CE cắt nhau tại I và BD.CE=2BI.CI . Tính số đo \(\widehat{BAC}\)
Cho ΔABC vuông tại A ( AB<AC), có đường cao AH. Trên nữa mặt phẳng bờ là AH có chứa C vẽ hình vuông AHKE
a) gọi p là giao điểm của AC và KE. Chứng minh tam giác ABP vuông cân
b)gọi Q là đỉnh thứ 4 của hình bình hành APQB, I là giao điểm của BP và AQ. Chứng minh ba điểm H, I, E thẳng hàng
d)chứng minh HEKQ là hình thang