trong mặt phẳng tọa độ oxy, cho hình vuông abcd có cạnh bằng 2. gọi m,n lần lượt là trung điểm của đoạn thẳng ab và c. trên đoạn mn lấy điểm h sao cho hm=3hn. lấy điểm i thuộc dường thẳng cd sao cho bi vuông góc với ah. biết c(1;1), d(5;3). tìm tọa độ điểm i
Từ điêm A nằm ngoài đường tròn (O) tã vẽ tiếp tuyến AB và cắt tuyến ACD với đường tròn sao cho tia AO nằm giữa AB và AD (B:tiếp điểm;C nằm giữa A và D).Gọi M là trung điểm của CD. a) cm AB^2=AC×AD b) cm tứ giác ABOM nt đường tròn (I) . ĐỊNH TÂM I c) đường tròn I cắt đường tròn O tại E. Cm AE là tiếp tuyến của đường tròn
Trên hệ trục tọa độ Oxy, cho hình vuông ABCD. Gọi M là 1 điểm thuộc đoạn thẳng CD sao cho \(\overrightarrow{MC}=2.\overrightarrow{DM}\). Gọi N là trung điểm của đoạn thẳng BC và tọa độ của N là: \(N\left(0;2019\right)\).
Gọi K là giao điểm của 2 đường thẳng AM và BD. Biết đường thẳng AM có phương trình là : \(x-10y+2018=0\). Tính khoảng cách từ gốc tọa độ O đến đường thẳng NK ?
P/s: Em xin phép nhờ quý thầy cô và các bạn giúp đỡ bài toán trong đề cương của trường THPT Việt Nam -- Ba Lan ( Thành phố Hà Nội )
Cho tam giác ABC vuông tại B,phân giác AD.Kẻ DE vuông góc với AC(E thuộc AC).Trên tia đối của tia BA lấy điểm K sao cho BK=CE.Chứng minh rằng:
a)DA là tia phân gaics của góc BDE và AB=AE.
b)BD<CD.
c)Ba điểm E,D,K thẳng hàng.
Help me mọi người ơi.
vẽ đoạn thẳng AC=5cm .vẽ điểm B trên đoạn thẳng AC sao cho BC=3cm a) tính AB b) trên tia đối của tia BA vẽ điểm D sao cho BD=5cm so sánh AB và CD c) hỏi D có là trung điểm của OA ko? tại sao?
các bạn vẽ hình cùng mình nhé
Cho hình thang ABCD(AB//CD, AB<CD). M là điểm thay đổi trên cạnh AB(M khác A và B). Gọi s là giao điểm của hai đường thẳng chứa hai cạnh bên của hình thang ABCD. Các tia CM và DM lần lượt cắt SD, SC tại E và F.
Chứng minh rằng biểu thức \(\dfrac{SE}{E\text{D}}+\dfrac{SF}{FC}\)có giá trị không đổi khi M thay đổi
Cho hình vuông ABCD, M là trung điểm của CD. Gọi K là điểm nằm trên đường thẳng BD sao cho K không trùng với D và AK vuông góc với KM. Tính tỉ số DK/DB.☕
Trong mặt phẳng Oxy cho tam giác ABC có A(3;1), B(-4;2), C(4;-2) a) tính tọa độ các vecto AB, AC, BC b) tính độ dài các vecto AB, AC, BC c) gọi AH là đường cao của tam giác ABC hạ từ A. Tìm tọa độ điểm H
Cho hình tứ diện ABCD, M là trung điểm của CD, N là điểm thuộc cạnh BC sao cho BN = 3NC.
a) Tìm giao tuyến của hai mặt phẳng (ABM) và (AND)
b) Gọi Q là trung điểm AB. Tìm giao tuyến của (QMN) và (ABD)
Bài 1: Cho ∆ABC đều, kẻ AH vuông góc với BC tại H. Trên tia đối của tia BC lấy điểm E sao cho BE = BC. Trên tia đối của tia CB lấy điểm D sao cho CB = CD. a) Chứng minh rằng ∆AEB = ∆ADC b) Từ D kẻ DF vuông góc với AC tại F. Chứng minh rằng ∆CHF cân c) Chứng minh rằng AD//HF d) Từ B kẻ BM vuông góc AE tại M, từ C kẻ CN vuông góc với AD tại N. Gọi I là giao điểm của BM và CN. Chứng minh AI là phân giác của 𝐵𝐴𝐶
Bài 2: Cho ∆ABC có AB= AC = 5cm, BC = 6CM. Kẻ AK vuông góc với BC ( K ∈ BC). a) Chứng minh rằng KB = KC và 𝐵𝐴𝐾 ̂ =𝐶𝐴𝐾 ̂ b) Tính độ dài AK c) Kẻ KE vuông góc với AB ( E ∈ AB) , KD vuông góc với AC ( D ∈ AC). Chứng minh rằng ∆KDE là tam giác cân. d) Chứng minh rằng DE//BC e) Trên tia đối của tia AB lấy điểm M sao cho AB = AM. Chứng minh răng MC vuông góc với BC
Bài 3: Cho ∆ABC vuông tại B. Trên tia đối của tia BC lấy điểm D sao cho BD = BC a) Chứng minh rằng 𝐵𝐴𝐶 ̂ = 𝐵𝐴𝐷 ̂ b) Tính độ dài CD biết AB = 4cm, AC = 5 cm c) Kẻ BE vuông góc với AC ( E ∈ AC); BH vuông góc với AD ( H ∈ AD). ∆HBE là tam giác gì? Tại sao? d) ∆ABC cần có thêm điều kiện gì để ∆HBE đều