a) Ta có \(\dfrac{IA}{IB}=\dfrac{AM}{BM}\) nên theo tính chất đường phân giác đảo, ta có IM là phân giác của tam giác AIB.
b) Đường thẳng qua I vuông góc với IM cắt đường tròn (IAB) tại K' khác I.
Ta dễ dàng nhận thấy IK' là phân giác ngoài của tam giác IAB nên K' là điểm chính giữa của cung AIB. Suy ra K' nằm trên đường trung trực của AB nên theo cách dựng, ta có \(K\equiv K'\).
Vậy A, I, K, B đồng viên.
c) Qua H kẻ đường thẳng vuông góc với HE cắt AB tại J. IK cắt AB tại G.
Ta có \(\widehat{HJE}=90^o-\widehat{HEA}=\widehat{KGB}=\dfrac{1}{2}sđ\stackrel\frown{KB}-\dfrac{1}{2}sđ\stackrel\frown{AI}=\dfrac{1}{2}sđ\stackrel\frown{AK}-\dfrac{1}{2}sđ\stackrel\frown{AI}=\dfrac{1}{2}sđ\stackrel\frown{IK}=\widehat{HFK}\).
Suy ra tứ giác HJFE nội tiếp nên \(FE\perp FJ\). Mà FE là phân giác của tam giác AFB nên FJ là phân giác ngoài. Từ đó \(\dfrac{EA}{EB}=\dfrac{JA}{JB}=k\). Mặt khác H nằm trên đường tròn đường kính EJ nên H nằm trên đường tròn Apollonius của đoạn thẳng AB theo tỉ số k. Suy ra HE là phân giác của góc AHB. (đpcm)