Cho tam giác ABC . Các đường cao AD , BE ,CF cắt nhau tại H.
CMR: \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}\)= 1
Cho hình thang ABCD ,hai đường chéo cắt nhau tại O . Đường thẳng đi qua O cắt các cạnh bên AD , BC lần lượt tại các điểm M, N.
a/CM: \(\dfrac{AM}{AD}=\dfrac{BN}{BC}\)
b/CM: \(\dfrac{1}{OM}=\dfrac{1}{ON}=\dfrac{1}{AB}+\dfrac{1}{CD}\)
c/ Cho diện tích các tam giác AOD , COD lần lượt là a2 và b2 (a,b>0). Tính diện tích hình thang ABCD theo a và b.
Cho tam giác ABC nhọn các đường cao AA', BB', CC' cắt nhau tại H.
CMR: \(\dfrac{HA'}{AA'}+\dfrac{HB'}{BB'}+\dfrac{HC'}{CC'}=1\)
Cho tam giác ABC, I là một điểm nằm trong tam giác. IA, IB, IC theo thứ tự cắt BC, CA, AB tại M, N, P. Chứng minh \(\dfrac{MB}{MC}.\dfrac{NC}{NA}.\dfrac{PA}{PB}=1\)
1. tam giác ABC, \(\widehat{A}>90^o,AB< AC\),đường cao AH.Về phía trong góc BAC dựng D,E sao cho AD⊥AB,AD=AB ;AE⊥AC,AE=AC. M là trung điểm của DE. Cmr : A,H,M thẳng hàng
2. ΔABC. Trên các cạnh BC,CA,AB lần lượt lấy M,N,P sao cho \(\dfrac{BM}{BC}=\dfrac{CN}{CA}=\dfrac{AP}{AB}=k\left(k>0\right)\) . Dựng hình bình hành ABCD , lấy Q ∈CD sao cho CQ=AP
a) Cmr : AM, BN, CP là độ dài 3 cạnh của 1 Δ
b) Tìm k để diện tích ΔAMQ max
Cho tam giác ABC,lấy điểm M thuộc cạnh AB sao cho BM=\(\dfrac{1}{3}\)BA.
Gọi N là trung điểm của cạnh BC. Tính tỉ số \(\dfrac{SBMN}{SABC}\)
Cho tam giác ABC có AB>AC. Trên cạnh AB lấy điểm M sao cho AM=\(\dfrac{1}{3}\)AB, trên AC lấy điểm N sao cho AN=\(\dfrac{1}{3}\) AC. Gọi O là giao điểm của BM và CN, F là giao điểm của AO và BC, vẽ AI \(\perp\)BC tại I, OG \(\perp\) BC tại G, BD \(\perp\) FA tại D, CE \(\perp\) FA tại E. So sánh CA với BD, OG với IA, OA với FO?
Cho tam giác ABC, M là trung điểm của cạnh AB, N thuộc cạnh AC sao cho SAMN =\(\dfrac{1}{8}SABC\). Tính tỉ số \(\dfrac{AN}{AC}\)
1/ Cho H tùy ý nằm trong tam giác ABC. Tia AH,BH,CH cắt BC,AC,AB tại D,E,F. Chứng minh \(\dfrac{AH}{HD}+\dfrac{BH}{HE}+\dfrac{CH}{HF}\ge6\)
2/ Cho hình bình hành ABCD. Trên BC,CD lấy M,N tùy ý. AM,AN cắt BD tại E,F. Vẽ Ex//AD, Fy//AD, \(Ex\cap Fy=\left\{K\right\}\)
a) Chứng minh \(S_{AEF}=S_{KBD}\)
b) Chứng minh rằng nếu \(S_{AEF}=S_{EMNF}\) thì M,N,K thẳng hàng
3/ Tam giác ABC có 3 đường phân giác AD,BE,CF. Gọi \(S_{ABC}=S,S_{DEF}=S'\). Chứng minh rằng \(S\ge4S'\)