Gọi bán kính hình tròn tâm \(A\) và \(B\) lần lượt là \(x;y\left(m\right),\left(0< y< x< 3\right)\)
Vì 2 đường tròn tiếp xúc ngoài với nhau nên \(x+u=AB=3\left(m\right)\left(1\right)\)
Diện tích của hai vườn hoa hình tròn tâm \(A\) và \(B\) lần lượt là :,\(\text{π}x^2\left(m^2\right);\text{π}y^2\left(m^2\right)\)
Lại có diện tích bồn hoa bằng tổng diện tích của hai hình tròn bằng \(4,68\text{π}\left(m^2\right)\) nên :
\(\text{π}.x^2+\text{π}.y^2=4,68\text{π}\left(m^2\right)\Rightarrow x^2+y^2=4,68\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}x+y=3\\x^2+y^2=4,68\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3-y\\\left(3-y\right)^2+y^2=4,68\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3-y\\2y^2+6y+4,32=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3-y\\\left(9y-5\right)\left(6y-5\right)=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3-y\\\left[{}\begin{matrix}x=1,8\\y=1,2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1,8\\y=1,2\end{matrix}\right.\\\left\{{}\begin{matrix}x=1,2\\y=1,8\end{matrix}\right.\end{matrix}\right.\)
Vậy bán kính của hai khu vường hình tròn tâm A và B lần lượt là 1,2 m và 1,8 m