\(9^x-\left(2m+2\right)3^x-2m-3>0\)
\(\Leftrightarrow9^x-2.3^x-3-2m\left(3^x+1\right)>0\)
\(\Leftrightarrow\left(3^x+1\right)\left(3^x-3\right)-2m\left(3^x+1\right)>0\)
\(\Leftrightarrow\left(3^x+1\right)\left(3^x-2m-3\right)>0\)
\(\Leftrightarrow3^x-2m-3>0\)
\(\Leftrightarrow2m< 3^x-3\Rightarrow m< \min\limits_R\left(f\left(x\right)\right)\)
Với \(f\left(x\right)=3^x-3\)
Do \(3^x>0\Rightarrow f\left(x\right)>-3\Rightarrow2m\le-3\Rightarrow m\le-\frac{3}{2}\)