Phương trình đường thẳng d qua M và vuông góc AD có dạng:
\(1\left(x-0\right)+1\left(y+1\right)=0\Leftrightarrow x+y+1=0\)
Gọi \(M_1\) là giao điểm d và AD \(\Rightarrow\left\{{}\begin{matrix}x-y=0\\x+y+1=0\end{matrix}\right.\) \(\Rightarrow M_1\left(-\dfrac{1}{2};-\dfrac{1}{2}\right)\)
Gọi \(M'\) là điểm đối xứng M qua AD \(\Rightarrow M'\in AB\)
\(M_1\) là trung điểm MM' \(\Rightarrow M'\left(-1;0\right)\)
Phương trình AB vuông góc CH và qua M' có dạng:
\(1\left(x+1\right)-2y=0\Leftrightarrow x-2y+1=0\)
A là giao điểm AD và AB nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}x-y=0\\x-2y+1=0\end{matrix}\right.\) \(\Rightarrow A\left(1;1\right)\)
\(\Rightarrow\overrightarrow{MA}=\left(1;2\right)\Rightarrow\) đường thẳng AC nhận (2;-1) là 1 vtpt
Phương trình AC: \(2\left(x-1\right)-1\left(y-1\right)=0\Leftrightarrow2x-y-1=0\)
C là giao điểm AC và CH nên tọa độ thỏa mãn \(\left\{{}\begin{matrix}2x-y-1=0\\2x+y+3=0\end{matrix}\right.\) \(\Rightarrow C...\)
Do B thuộc AB nên tọa độ thỏa mãn: \(B\left(2b-1;b\right)\Rightarrow\overrightarrow{AB}=\left(2b-2;b-1\right)\)
\(AM=\sqrt{5}\Rightarrow AB=2\sqrt{5}\Rightarrow\left(2b-2\right)^2+\left(b-1\right)^2=\left(2\sqrt{5}\right)^2\)
\(\Rightarrow\) Tọa độ B \(\Rightarrow\) thay tọa độ B và C vào pt AD để kiểm tra, loại nghiệm cùng dấu
\(\Rightarrow\) Viết pt BC