Chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mai Anh

Trong mặt phẳng Oxy, cho △ABC có đường phân giác trong AD: x-y=0, đường cao CH: 2x+y+3=0, cạnh AC qua M(0;-1) AB=2AM. Viết phương trình các cạnh của △ABC

Nguyễn Việt Lâm
27 tháng 4 2021 lúc 17:44

Phương trình đường thẳng d qua M và vuông góc AD có dạng:

\(1\left(x-0\right)+1\left(y+1\right)=0\Leftrightarrow x+y+1=0\)

Gọi \(M_1\) là giao điểm d và AD \(\Rightarrow\left\{{}\begin{matrix}x-y=0\\x+y+1=0\end{matrix}\right.\) \(\Rightarrow M_1\left(-\dfrac{1}{2};-\dfrac{1}{2}\right)\)

Gọi \(M'\) là điểm đối xứng M qua AD \(\Rightarrow M'\in AB\)

\(M_1\) là trung điểm MM' \(\Rightarrow M'\left(-1;0\right)\)

Phương trình AB vuông góc CH và qua M' có dạng:

\(1\left(x+1\right)-2y=0\Leftrightarrow x-2y+1=0\)

A là giao điểm AD và AB nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}x-y=0\\x-2y+1=0\end{matrix}\right.\) \(\Rightarrow A\left(1;1\right)\)

\(\Rightarrow\overrightarrow{MA}=\left(1;2\right)\Rightarrow\) đường thẳng AC nhận (2;-1) là 1 vtpt

Phương trình AC: \(2\left(x-1\right)-1\left(y-1\right)=0\Leftrightarrow2x-y-1=0\)

C là giao điểm AC và CH nên tọa độ thỏa mãn \(\left\{{}\begin{matrix}2x-y-1=0\\2x+y+3=0\end{matrix}\right.\) \(\Rightarrow C...\)

Do B thuộc AB nên tọa độ thỏa mãn: \(B\left(2b-1;b\right)\Rightarrow\overrightarrow{AB}=\left(2b-2;b-1\right)\)

\(AM=\sqrt{5}\Rightarrow AB=2\sqrt{5}\Rightarrow\left(2b-2\right)^2+\left(b-1\right)^2=\left(2\sqrt{5}\right)^2\)

\(\Rightarrow\) Tọa độ B \(\Rightarrow\) thay tọa độ B và C vào pt AD để kiểm tra, loại nghiệm cùng dấu

\(\Rightarrow\) Viết pt BC


Các câu hỏi tương tự
Jelly303
Xem chi tiết
Thọ Nguyễn
Xem chi tiết
FREESHIP Asistant
Xem chi tiết
Katty Phươngg
Xem chi tiết
Ngọc Lan
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết