Trong ko gian với hệ tọa độ Oxyz, cho điểm A(1,-2,3) và đường thẳng d có phương trình \(\dfrac{X+1}{2}=\dfrac{Y-2}{1}=\dfrac{Z+3}{-1}\), phương trình mặt cầu tâm A, tiếp xúc với d
A. (x-1)2+(y+2)2+(z-1)2=5
B. (x+1)2+(y-2)2+(z+3)2= 50
C. (x-1)2+(y+2)2+(Z-3)2= 50
D. (x-1)2+(y-2)2-(z-3)2= \(\sqrt{50}\)
Lời giải:
Vì mặt cầu tiếp xúc với đường thẳng nên độ dài bán kính chính bằng khoảng cách từ tâm đến đường thẳng đó
Ta thấy đường thẳng $(d)$ đi qua \(M(-1,2,-3)\) và có vector chỉ phương là \(\overrightarrow{u}=(2,1,-1)\)
\(\Rightarrow d(A,d)=\frac{|[\overrightarrow{u},\overrightarrow{MA}]|}{|\overrightarrow{u}|}=\frac{10\sqrt{3}}{\sqrt{6}}=5\sqrt{2}=R\rightarrow R^2=50\)
Do đó PTMC là: \((x-1)^2+(y+2)^2+(z-3)^2=50\)
Đáp án C