Cho mặt cầu (S): x2 + (y-1)2 + (z-1)2 = 1 và đường thẳng d: x-2 = y = -z. Hai mặt phẳng (P) và (Q) chứa d, tiếp xúc với (S) tại P và Q. Tìm tọa độ trung điểm H của đoạn thẳng PQ
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): \(x^2+y^2+z^2-2x+6y-8z-10=0\) và mặt phẳng (P): \(x+2y-2z=0\). Viết phương trình mặt phẳng (Q) song song với (P) và tiếp xúc với (S).
Trong không gian với hệ trục tọa độ \(Oxyz\), cho mặt cầu \(\left(S\right):\left(x+1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=48\) và đường thẳng \(\left(d\right):\dfrac{x+1}{1}=\dfrac{y-2}{1}=\dfrac{z-3}{\sqrt{2}}\) . Điểm \(M\left(a;b;c\right)\left(a>0\right)\) nằm trên đường thẳng \(\left(d\right)\) sao cho từ \(M\) kẻ được 3 tiếp tuyến \(MA,MB,MC\) đến mặt cầu \(\left(S\right)\) thỏa mãn \(\widehat{AMB}=60^o,\widehat{BMC}=90^o,\widehat{CMA}=120^o\). Tính \(Q=a+b-c\)?
Trong không gian với hệ trục toạ độ Oxyz cho đường thẳng \(d:\dfrac{x-1}{2}=\dfrac{y}{1}=\dfrac{z-1}{1}\) và mặt cầu \(\left(S\right):\left(x-4\right)^2+\left(y-5\right)^2+\left(z-7\right)^2=2\). Hai điểm A và B thay đổi trên (S) sao cho tiếp diện của (S) tại A và B vuông góc với nhau. Đường thẳng qua A song song với d cắt (Oxy) tại M, đường thẳng qua B song song với d cắt (Oxy) tại N. Tìm giá trị lớn nhất của tổng \(AM+BN=?\)
A. \(8\sqrt{6}\)
B. \(\sqrt{20}\)
C. \(16\sqrt{6}\)
D. \(7\sqrt{6}+5\sqrt{3}\)
Trong không gian với hệ tọa độ Oxyz, cho 2 điểm A(2;0;0) và B(1;1;-1). Viết phương trình mặt phẳng trung trực (P) của đoạn thẳng AB và phương trình mặt cầu tâm 0, tiếp xúc với (P)
Trong không gian với hệ trục toạ độ \(Oxyz\), cho mặt phẳng \(\left(P\right):x+y-z+2=0\) và hai đường thẳng \(d:\left\{{}\begin{matrix}x=1+t\\y=t\\z=2+2t\end{matrix}\right.\) và \(d':\left\{{}\begin{matrix}x=3-t'\\y=1+t'\\z=1-2t'\end{matrix}\right.\). Biết rằng có hai đường thẳng có các đặc điểm: song song với \(\left(P\right)\), cắt \(d\), \(d'\) và tạo với \(d\) góc \(30^\circ\). Gọi hai đường thẳng đó là \(\Delta_1\) và \(\Delta_2\), tính \(\cos\widehat{\left(\Delta_1;\Delta_2\right)}=?\)
A. \(\dfrac{1}{\sqrt{2}}\)
B. \(\dfrac{1}{\sqrt{5}}\)
C. \(\dfrac{1}{2}\)
D. \(\sqrt{\dfrac{2}{3}}\)
Trong không gian với hệ toạ độ \(Oxyz\), cho mặt cầu \(\left(S\right)\) có phương trình \(x^2+\left(y+1\right)^2+\left(z-2\right)^2=10\) và và đường thẳng \(\Delta\) có phương trình chính tắc là \(\dfrac{x}{2}=\dfrac{y}{-1}=\dfrac{z-1}{2}\). Gọi \(\left(P\right)\) là mặt phẳng thay đổi chứa \(\Delta\). Khi \(\left(P\right)\cap\left(S\right)\) theo đường tròn có bán kính nhỏ nhất, hãy viết phương trình mặt phẳng \(\left(P\right)\) và tính bán kính đường tròn giao tuyến đó.
A. \(\left(P\right):2x-2y+3z+4=0; r=1\)
B. \(\left(P\right):x+y+4z-2=0;r=6\)
C. \(\left(P\right):2x+2y-z+1=0;r=3\)
D. \(\left(P\right):3x-y+2z-1=0;r=4\)
Trong không gian với hệ tọa độ Oxyz, cho ba đường thẳng \(\left(d_1\right):\frac{x-1}{2}=\frac{y-1}{1}=\frac{z-1}{-2}\), \(\left(d_2\right):\frac{x-3}{1}=\frac{y+1}{2}=\frac{z-2}{2}\), \(\left(d_3\right):\frac{x-4}{2}=\frac{y-4}{-2}=\frac{z-1}{1}\). Mặt cầu tâm tiếp xúc với cả ba đường thẳng \(\left(d_1\right),\left(d_2\right),\left(d_3\right)\). Tính \(S=a+2b+3c\).
A. S = 10
B. S = 11
C. S = 12
D. S = 13