Bài 3: Phương trình đường thẳng trong không gian

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thụy Miên

trong không gian với hệ tọa độ Oxyz cho 2 đường thẳng d1: \(^{\dfrac{x-1}{1}=\dfrac{y+1}{-1}=\dfrac{z}{2}}\) , d2: \(\dfrac{x}{1}=\dfrac{y-1}{2}=\dfrac{z}{1}\)

Đường tahnwgr d đi qua A(5;-3;5) cắt d1, d2 tại B,C. Độ dài BC là:

Akai Haruma
6 tháng 7 2017 lúc 0:33

Lời giải:

Dễ thấy đường thẳng $d_1$ đi qua điểm \(M(1,-1,0)\Rightarrow \overrightarrow{MA}=(4,-2,5)\)

Khi đó, nếu $(P)$ là mp chứa \(d_1,MA\) thì \(\overrightarrow{n_P}=[\overrightarrow{d_1},\overrightarrow{MA}]=(1,-3,-2)\)

\(\Rightarrow \text{PTMP}: x-3y-2z-4=0\)

Ta thấy \(C\in (d_2),C\in (P)\Rightarrow \) dễ dàng tìm được tọa độ điểm \(C(-1,-1,-1)\)

Lại có \(B=AC\cap d_1\). Và PTĐT \(AC\): \(\frac{x+1}{3}=\frac{y+1}{-1}=\frac{z+1}{3}\)

\(\Rightarrow B(2,-2,2)\)

Do đó \(BC=\sqrt{19}\)


Các câu hỏi tương tự
Phạm Văn Thiệu
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sonyeondan Bangtan
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Võ Nhân
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Chi An
Xem chi tiết