1. Cho hình thang ABCD(AB//CD) có M là giao điểm của AD và BC, N là giao điểm của hai đg chéo. Gọi I và K theo thứ tự là giao điểm của MN với AB và CD. CMR I là trung điểm của AB, K là trung điểm của CD
2.Cho hình bình hành ABCD, 1 đg thẳng đi qua D cắt AC, AB, CB theo thứ tự ở M, N, K. CMR
a) DM2=MN. MK
b) \(\dfrac{DM}{DN}\) +\(\dfrac{DM}{DK}\)=1
3.cho tam giác ABC lấy ba điểm A' , B', C' thứ tự trên ba cạnh BC, CA, AB của tam giác sao cho ba đg AA' ; BB' ; CC' đồng quy thì \(\dfrac{A'B}{A'C}\).\(\dfrac{B'C}{B'A}\).\(\dfrac{C'A}{C'B}\)=1
4. cho tam giác ABC. 1 dg thẳng d cắt cạnh AB tại D, cắt cạnh AC tại E và cắt đg thẳng BC tại N. Gọi O là giao điểm củ BE và CD. Tia AO cắt BC tại M. CMR 2 điểm M và N CHIA TRONG VÀ CHIA NGOÀI ĐOẠN THẲNG BC theo cùng 1 tỉ lệ
5. cho hình thang ABCD (AB//CD). M là trung điểm của CD. Gọi I là giao điểm của AM và BD, gọi K là giao điểm của BM và AC a) CMR IK//AB b) đg thẳng IK cắt AD, BC theo thứ tự tại E, F. CMR EI=IK=KF
Cho h.bình hành ABCD . Goi E, F theo thứ tự là trung điểm của AD , BC . Đường chéo AC cắt BE vad DF tại P, Q .
â) Lấy M thuộc bất kì cạnh DC . Gọi I,K theo thứ tự là điểm đối xứng của M qua E và F . C/m: I,K thuộc đường thẳngAB
b) C/m : AI + BK không đổi khi M di chuyển trên cạnh CD .
Cho hình chữ nhật ABCD, O là giáo điểm 2 đường chéo. Điểm I nằm trên cạnh OA. Qua I kẻ đường thẳng //BD, cắt AD và AB theo thứ tự ở E, F.
a. CMR: IE = IF.
b. K, M theo thứ tự là trung điểm của BE, DF. Xác định hình dạng tứ giác IKOM.
Cho tứ giác lồi ABCD. Trên cạnh AB lấy điểm M, trên cạnh AC lấy điểm N sao cho MA=kMB, ND=k.NC( k là 1 số thực dương). Gọi P, Q, R theo thứ tự là các trung điểm của các đoạn thẳng AD, BC,MN.
a) CHứng minh: 3 điểm P, Q, R thẳng hàng.
b) So sánh RP/RQ=MA/MB
Bài 1: Cho hình bình hành ABCD. Trên BD lấy điểm E, gọi F là điểm đối xứng với C qua E. Qua F, kẻ Fx song song với AD, Fy song song với AB; Fx cắt AB tại I, Fy cắt AD tại K. Chứng minh rằng: I, K, E thẳng hàng
Bài 2: Cho hình thang ABCD có đáy lớn CD. Qua A kẻ đường thẳng AK song song với BC. Qua B kẻ đường thảng BI song song với AB. BI cắt AC ở F, AK cắt BD ở E. Chứng minh rằng:
a) EF // AB;
b) AB^2 = CD. EF
Bài 3: Cho hình bình hành ABCD, điểm E thuộc cạnh AB, điểm F thuộc cạnh AD. Đường thẳng qua D và song song với EF cắt AC ở I. Đường thẳng qua B và song song với EF cắt AC ở K. Chứng minh rằng:
a) AI = CK
b) AB/AE + AD/AF = AC/AN ( N là giao điểm của EF và AC)
Bài 4: Cho hình bình hành AABCD. Đường thẳng đi qua D cắt AC, AB, CB theo thứ tự ở M, N, K. Chứng minh rằng:
a) DM2 = MN.MK
b) DM/DN + DM/DK = 1
Bài 5: Cho hình thoi ABCD. Qua C kẻ đường thẳng d cắt các tia đối của các tia BA, CA theo thứ tự ở E và F. Chứng minh rằng:
a) EM/AB = AD/DF
b) EBD đồng dạng với BDF;
c) Góc BID bằng 120 độ ( I là giao điểm của DE và BF)
Bài 6: Cho cân tại A có BC = 2a. M là trung điểm của BC. Lấy các điểm D, E theo thứ tự thuộc các cạnh AB, AC sao cho
CMR: Tích BD.CE không đổi
CMR: DM là phân giác của góc
Tính chu vi của AED nếu ABC đều
Bài 7: Cho ( AB khác AC) Gọi E và F theo thứ tự là các hình chiếu của B và C trên tia phân giác của góc A. Gọi K là giao điểm của các đường thẳng FB và CE. Chứng minh rằng: AK là tia phân giác của góc ngoài tại đỉnh A của
Bài 8: Cho hình thang ABCD( AB //CD). M là trung điểm của cạnh CD. Gọi I là giao điểm của AM và BD, K là giao điểm của BM và AC
a) Chứng minh rằng: IK//AB
b) Đường thẳng IK cắt AD và BC theo thứ tự ở E và F. Chứng minh IE = IK = KF
Cho hình bình hành ABCD. Gọi I,K theo thứ tự là trung điểm của CD, AB, Đường chéo BD cắt AI,UK theo thứ tự E,F Chứng minh rằng DE=EF=FB
Câu 11: cho tứ giác ABCD. các đường thẳng AB và CD cắt nhau tại M, các đường thẳng AD và BC cắt nhau tại N. Gọi I,J,K theo thứ tự là trung điểm của BD,AC,MN. CMR I,J,K thẳng hàng.
Cho hình chữ nhật ABCD,E thuộc AD ,F thuộc AB .Gọi I,K,M,N theo thứ tự là trung điểm của EF ,DF,BE,BD.Chứng minh rằng IN=KM