Chương III - Hệ hai phương trình bậc nhất hai ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Trần Thành Đạt

[TOÁN 9 - SỰ KIỆN GIẢI ĐỀ CỦNG CỐ KIẾN THỨC HKI - CÂU 1]

Đề này trích từ câu 4 mà bạn Đào Vương Chí Khang gửi về trong đề thi HKI của các bạn học sinh lớp 9 trường THPT Chuyên Hà Nội - Amsterdam đã thi. 

Hi vọng câu này không quá khó và nhiều bạn trả lời đúng để được anh Nguyễn Việt Lâm tick đúng! ^^ Số GP linh động theo giáo viên chấm ^^

undefined

Trần Minh Hoàng
17 tháng 1 2021 lúc 8:33

Câu 4b:

Ta có \(a-\sqrt{a}=\sqrt{b}-b\Leftrightarrow a+b=\sqrt{a}+\sqrt{b}\). (1)

Áp dụng bất đẳng thức Cauchy - Schwarz ta có:

\(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2};\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a+b\right)}\).

Kết hợp với (1) ta có:

\(a+b\le\sqrt{2\left(a+b\right)}\Leftrightarrow0\le a+b\le2\).

Ta có: \(P\ge\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(\sqrt{a}+\sqrt{b}\right)^2}\) (Do \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\))

\(=\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}\) (Theo (1))

\(\Rightarrow P\ge\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}\).

Áp dụng bất đẳng thức AM - GM cho hai số thực dương và kết hợp với \(a+b\le2\) ta có:

\(\dfrac{\left(a+b\right)^2}{2}+\dfrac{2020}{\left(a+b\right)^2}=\left[\dfrac{\left(a+b\right)^2}{2}+\dfrac{8}{\left(a+b\right)^2}\right]+\dfrac{2012}{\left(a+b\right)^2}\ge2\sqrt{\dfrac{\left(a+b\right)^2}{2}.\dfrac{8}{\left(a+b\right)^2}}+\dfrac{2012}{2^2}=4+503=507\)

\(\Rightarrow P\ge507\).

Đẳng thức xảy ra khi a = b = 1.

Vậy Min P = 507 khi a = b = 1.

 

Trần Minh Hoàng
17 tháng 1 2021 lúc 8:47

Giải nốt câu 4a:

ĐKXĐ: \(x\geq\frac{-1}{2}\).

Phương trình đã cho tương đương:

\(x^2+2x+1=2x+1+2\sqrt{2x+1}+1\)

\(\Leftrightarrow\left(x+1\right)^2=\left(\sqrt{2x+1}+1\right)^2\)

\(\Leftrightarrow\left(x+1\right)^2-\left(\sqrt{2x+1}+1\right)^2=0\)

\(\Leftrightarrow\left(x+1-\sqrt{2x+1}-1\right)\left(x+1+\sqrt{2x+1}+1\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2x+1}\right)\left(x+\sqrt{2x+1}+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{2x+1}=0\left(1\right)\\x+\sqrt{2x+1}+2=0\left(2\right)\end{matrix}\right.\).

Ta thấy \(x+\sqrt{2x+1}+2>0\forall x\ge-\dfrac{1}{2}\).

Do đó phương trình (2) vô nghiệm.

Xét phương trình (1) \(\Leftrightarrow x=\sqrt{2x+1}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2=2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left(x-1\right)^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x-1=\sqrt{2}\\x-1=-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x=\sqrt{2}+1>0>-\dfrac{1}{2}\left(TM\right)\\x=-\sqrt{2}+1< 0\left(\text{loại}\right)\end{matrix}\right.\end{matrix}\right.\).

Vậy nghiệm của phương trình là \(x=\sqrt{2}+1\).

Hồng Phúc
17 tháng 1 2021 lúc 8:48

4.

a, ĐK: \(x\ge-\dfrac{1}{2}\)

\(x^2-1=2\sqrt{2x+1}\)

\(\Leftrightarrow x^2+2x+1=2x+1+2\sqrt{2x+1}+1\)

\(\Leftrightarrow\left(x+1\right)^2=\left(\sqrt{2x+1}+1\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+1}+1=x+1\\\sqrt{2x+1}+1=-x-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+1}=x\\\sqrt{2x+1}=-x-2\end{matrix}\right.\)

Vì \(x\ge-\dfrac{1}{2}\Rightarrow-x-2\le\dfrac{1}{2}-2< 0\)

Nên \(\sqrt{2x+1}=x\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\2x+1=x^2\end{matrix}\right.\)

\(\Leftrightarrow x=1+\sqrt{2}\left(tm\right)\)

Vậy phương trình đã cho có nghiệm \(x=1+\sqrt{2}\)


Các câu hỏi tương tự
Đỗ Thương Huyền
Xem chi tiết
Bố m cắt đầu moi.
Xem chi tiết
Trần Mai Quyên
Xem chi tiết
Vương Nhất Đông
Xem chi tiết
STAR channel
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
Đỗ Thanh Tùng
Xem chi tiết
MY NGUYỄN
Xem chi tiết