Cho sin alpha = 15/17. Tính cos alpha, tan alpha
Tính:
a, A= 4cos^2 alpha - 6 sin^2 alpha, biết sin alpha = 1/5
b, B= sin^2 x cos alpha, biết tan alpha + cot alpha = 3
a) cotα = 0,6 (0 < α < 90°). Tính 2tanα - 3cotα + sin2α
b) 0 < α < 90°, cos α = 4/5 . Tính 3sinα - 2cotα + tan2α
c) 0 < α < 90° , sin α = 3/5 . Tính tan α - cotα/cos2α
d) 0 < α < 90° , tanα = 2. Tính 4cos2α - 2sinα/cot α
cho tan\(\alpha\)=3/4. tinh
A=\(\dfrac{sin^3\alpha+cos^3\alpha}{2\sin\alpha\times\cos^2\alpha+\cos\alpha\times\sin^2\alpha}\)
Chứng minh:
\(a,tan\alpha=\frac{sin\alpha}{cos\alpha}\)
\(b,cot\alpha=\frac{cos\alpha}{sin\alpha}\)
Rút gọn
\(A=\cos^2\alpha+cos^2\alpha+cot^2\alpha\)
\(B=\sin^2\alpha+sin^2\alpha\cdot tan^2\alpha\)
\(C=\frac{2cos^2\alpha-1}{\sin\alpha+cos^2\alpha}\)
1. Đơn giản biểu thức
a. \(\sin\alpha\cdot\cos\alpha\left(\tan\alpha+\cot\alpha\right)\)
b. \(\left(\sin^2\alpha+\cos^2\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2\)
c. \(\tan^2\alpha-\sin^2\alpha\cdot\tan^2\alpha\)
Đơn giản các biểu thức sau:
\(a,\left(\sin\alpha+\cos\alpha\right)^2+\left(\sin\alpha-\cos\alpha\right)^2\)
\(b,\sin\alpha\cos\alpha\left(\tan\alpha+\cot\alpha\right)\)
Bài 8: Rút gọn các biểu thức sau:
a/ (1-cos α) . (1+cos α)
b/ 1+sin2 α + cos2 α
c/ sin α - sin α cos2 α
d/ sin4 α + cos4 α + 2sin2 α cos2 α
e/ tan2 α - sin2 α tan2 α
f/ cos2 α + tan2 α cos2 α
giúp mk giải bài này ik mn ơiiiii
CMR: Với mọi góc nhọn \(\alpha\) ta có :
\(a,\sin^2\alpha+\cos^2\alpha=1\)
\(b,\tan\alpha=\frac{\sin\alpha}{\cos\alpha}\)
\(c,\tan^2\alpha+1=\frac{1}{\cos^2\alpha}\)
Cho tan \(\alpha \) = \(\dfrac{1}{2}\) . Tính A = \(\dfrac{sin\alpha+cos\alpha}{cos\alpha-sin\alpha}\)