Cộng 3 vế ta đc
x+2y+z+2x+y+2z=5+9+10
=>3x+2y+3z=24
=>3(x+y+z)=24
=> x+y+z=8
vậy x+y+z=8
Cộng 3 vế ta đc
x+2y+z+2x+y+2z=5+9+10
=>3x+2y+3z=24
=>3(x+y+z)=24
=> x+y+z=8
vậy x+y+z=8
Cho: \(x^2y-y^2x+x^2z-z^2x+y^2z+z^2y=2xyz\). Chứng minh: 3 trong số x, y, z có 2 số bằng nhau hoặc đối nhau
Cho: \(x^2y-y^2x+x^2z-z^2x+y^2z+z^2y=2xyz\). Chứng minh: Trong 3 số x, y, z có 2 số bằng nhau hoặc đối nhau
Chứng minh đẳng thức \(\left(\frac{2x+2y-z}{3}\right)^2+\left(\frac{2y+2z-x}{3}\right)^2+\left(\frac{2z+2x-y}{3}\right)^2=x^2+y^2+z^2\)
Cho x, y, z>0. Chứng minh rằng:
\(\dfrac{x}{x+2y+3z}+\dfrac{y}{y+2z+3x}+\dfrac{z}{z+2x+3y}\ge\dfrac{1}{2}\)
Rút gọn phân thức:
\(a,\dfrac{x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)}{x^2y-x^2z+y^2z-y^3}\)
\(b,\dfrac{x^5+x+1}{x^3+x^2+x}\)
Cho các số dương x, y, z thỏa mãn: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\). CM: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\)
Cho các số dương x, y, z thỏa mãn: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\). CM: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\)
Cho x,y,z \(\ne\) -1. Tính giá trị của \(A=\frac{xy+2x+1}{xy+x+y+1}+\frac{yz+2y+1}{yz+y+z+1}+\frac{zx+2z+1}{zx+x+z+1}\)
Cho các số dương x, y, z thỏa mãn: 1/x+1/y+1/z=4. CM: 1/2x^2+y^2+z^2+1/x^2+2y^2+z^2+1/x^2+y^2+2z^2 bé hơn hoặc bằng 1