Cho: \(x^2y-y^2x+x^2z-z^2x+y^2z+z^2y=2xyz\). Chứng minh: Trong 3 số x, y, z có 2 số bằng nhau hoặc đối nhau
Chứng minh đẳng thức \(\left(\frac{2x+2y-z}{3}\right)^2+\left(\frac{2y+2z-x}{3}\right)^2+\left(\frac{2z+2x-y}{3}\right)^2=x^2+y^2+z^2\)
Cho các số dương x, y, z thỏa mãn: 1/x+1/y+1/z=4. CM: 1/2x^2+y^2+z^2+1/x^2+2y^2+z^2+1/x^2+y^2+2z^2 bé hơn hoặc bằng 1
Cho x, y, z>0. Chứng minh rằng:
\(\dfrac{x}{x+2y+3z}+\dfrac{y}{y+2z+3x}+\dfrac{z}{z+2x+3y}\ge\dfrac{1}{2}\)
Cho x,y,z là số đo ba cạnh của 1 tam giác, chứng minh: \(x^2y+y^2z+z^2x+zx^2+yz^2+xy^2-x^3-y^3-z^3>0\)
Cho x,y,z là các số hữu tỉ thỏa mãn \(x+y^2+z^2;y+x^2+z^2;z+x^2+y^2\) là số nguyên. Chứng minh rằng 2x;2y;2z là số nguyên.
Cho các số dương x, y, z thỏa mãn: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\). CM: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\)
Cho các số dương x, y, z thỏa mãn: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=4\). CM: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le1\)
Cho các số x, y, z dương thỏa mãn: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=3\)
Cmr: \(\dfrac{1}{\left(2x+y+z\right)^2}+\dfrac{1}{\left(2y+z+x\right)^2}+\dfrac{1}{\left(2z+x+y\right)^2}\ge\dfrac{3}{16}\)