Lời giải:
\(S=1+5^2+5^4+....+5^{198}+5^{200}\) (1)
\(\Rightarrow 5^2.S=5^2+5^4+...+5^{200}+5^{202}\) (2)
Lấy (2) trừ (1):
\(S(5^2-1)=(5^2+5^4+...+5^{200}+5^{202})-(1+5^2+....+5^{200})\)
\(\Leftrightarrow 24S=5^{202}-1\Leftrightarrow S=\frac{5^{202}-1}{24}\)
\(S=1+5^2+5^4+...+5^{200}.\)
\(5^2S=5^2\left(1+5+5^2+...+5^{200}\right).\)
\(5^2S=5^2+5^4+5^6+...+5^{202}.\)
\(5^2S-S=\left(5^2+5^4+5^6+...+5^{202}\right)-\left(1+5^2+5^4+...+5^{200}\right).\)
\(24S=5^{202}-1\Rightarrow S=\dfrac{5^{202}-1}{24}.\)
Vậy.....
Ta có:
\(S=1+5^2+5^4+...+5^{200}\)
<=> \(25S=5^2+5^4+5^6+...+5^{202}\)
<=>\(24S=5^{202}-1\)
<=>\(S=\dfrac{5^{202}-1}{24}\)
S=1+\(5^2+..+5^{200}\)
25S=\(5^2+5^4+...+5^{202}\)
25S-S=\(\left(5^2+5^4+..+5^{202}\right)-\left(1+5^2+..+5^{200}\right)\)
\(\Rightarrow24S=5^{202}-1\)
\(\Rightarrow\)S=\(\dfrac{5^{202}-1}{24}\)
Nếu đung tick nha