9B=3^2+3^4+...+3^102
=>8B=3^102-1
=>\(B=\dfrac{3^{102}-1}{8}\)
9B=3^2+3^4+...+3^102
=>8B=3^102-1
=>\(B=\dfrac{3^{102}-1}{8}\)
tính (100+ 99/2 +98/3 +...+ 1/100) / (1/2 + 1/3 +1/4+...+ 1/101) -2
\(\left(100+\dfrac{99}{2}+\dfrac{98}{3}+\dfrac{97}{4}....+\dfrac{1}{100}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....\dfrac{1}{100}\right)-2\)
Tính \(\left(100+\dfrac{99}{2}+\dfrac{98}{3}+... +\dfrac{2}{99}+\dfrac{1}{100}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{101}\right)-2\)
Tính tổng : S\(_1\) = \(1+3^2+5^2+7^2+....+97^2+99^2\)
S\(_2\) =\(2+4^2+6^2+8^2+.....+98^2+100^2\)
S\(_3\) = 1.2.3+2.3.4+3.4.5+....+97.98.99
1, cho \(M=\dfrac{1}{2-\sqrt{3}}\) và \(N=\sqrt{6}.\sqrt{2}\) kết quả của phét tính 2M - N bằng
a, \(4+4\sqrt{3}\) b, \(2+\sqrt{3}\) c,4 d, \(2\sqrt{3}\)
2, với x>6 thì biểu thức \(-x+\sqrt{\left(6-x\right)^2}\) rút gọn đc kết quả bằng
a, -2x+6 b,2x-6 c -6 d, 6
3, cho hàm số y=f(x)=\(\dfrac{1}{3}\) x -1 khẳng định nào sao đây đúng
a, f(2)<f(3) b, f(-3)< f(-4) c, f (-4)>f(2) d, f(2)<(0)
4,cho tam giác ABC đều cạch a nội tiếp đg tròn (O;R) giá trị của R bằng
a, \(R=\dfrac{a\sqrt{3}}{3}\) b, R=a c, \(R=a\sqrt{3}\) d, \(R=\dfrac{a\sqrt{3}}{2}\)
Rút gọn
1. Căn1/3-2 căn 12 - căn 18- căn 1/2
2. Căn 1/5+ căn 24-2 căn 45 - căn 1/6
3. Căn 1/7+ căn 98- căn 28+ căn 1/2
4. Căn 1/11 - căn 63 - căn 44+ căn 1/7
5. Căn 2/3- căn3/2 - căn 2/5 + căn 5/2
6. Căn 7/2 + căn 3/5- căn 2/7 - căn 5/3
Tính giá trị của biểu thức:
\(A=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+....+\dfrac{1}{97}+\dfrac{1}{99}}{\dfrac{1}{1.99}+\dfrac{1}{3.97}+\dfrac{1}{5.99}+....+\dfrac{1}{97.3}+\dfrac{1}{99.1}}\)
\(B=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....+\dfrac{1}{99}+\dfrac{1}{100}}{\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+....+\dfrac{1}{99}}\)
cho tổng \(A=\dfrac{1}{2^3+3}+\dfrac{1}{3^3+4}+\dfrac{1}{4^3+5}+...+\dfrac{1}{2018^3+2019}\)
Hãy so sánh A với \(\dfrac{1}{6}\)
Tính tổng : T=\(\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-\frac{1}{\sqrt{4}-\sqrt{5}}+...+\frac{1}{\sqrt{99}-\sqrt{100}}\)