Tính nhanh giá trị của các biểu thức sau:
a) \(A=85^2+75^2+65^2+55^2-45^2-35^2-25^2-15^2\)
b) \(B=1^2-2^2+3^2-4^2+5^2-6^2+...+2011^2-2012^2\)
c) \(C=\dfrac{1}{1975}\left(\dfrac{2}{1945}-1\right)-\dfrac{1}{1945}\left(1-\dfrac{2}{1975}\right)-\dfrac{1974}{1975}.\dfrac{1946}{1945}-\dfrac{3}{1975.1945}\)
d) \(D=\left(2^9+2^7+1\right)\left(2^{23}-2^{21}+2^{19}-2^{17}+2^{14}-2^{10}+2^9-2^7+1\right)\)
Thực hiện phép tính các đa thức sau
a) \(\left(3x^2-2x+5\right)\left(2x^2-3x+1\right)\)
b) \(\left(\dfrac{3}{2}x^2-\dfrac{2}{3}x-\dfrac{5}{3}\right)\left(4x^2-\dfrac{3}{2}x-3\right)\)
c) \(\left(\dfrac{3}{4}x^2+2x-\dfrac{1}{3}\right)\left(4x^2-\dfrac{3}{2}x-3\right)\)
d) \(\left(-\dfrac{1}{3}+2x-x^2\right)\left(-2x^2-\dfrac{1}{2}x+2\right)\)
e) \(\left(3xy+\dfrac{1}{2}x\right)\left(3x^{2y}-3xy^2-1\right)\)
Tính
\(A=\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+...+\dfrac{1}{\left(x+9\right)\left(x+10\right)}\)
\(B=\left[\dfrac{3}{x+1}+\left(\dfrac{3}{x+1}-\dfrac{x}{x^2+2x+1}\right):\dfrac{2x^2+3x}{x+1}\right]:\dfrac{1+3x}{x^2+x}\)
Rút gọn:
\(C=\left[\left(1+\dfrac{1}{x}\right)\cdot\dfrac{2}{x^3+3x^2+3x+1}+\left(1+\dfrac{1}{x^2}\right)\cdot\dfrac{1}{1+2x+x^2}\right]:\dfrac{x-1}{x^3}\)
Rút gọn \(\left[\dfrac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right]:\dfrac{x^2+x}{x^3+x}\)
f, \(x^2-x+25\)
\(=x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2-\left(\dfrac{1}{2}\right)^2+25\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{99}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\) ≥ 0 nên \(\left(x-\dfrac{1}{2}\right)^2+\dfrac{99}{4}\ge\dfrac{99}{4}\) với mọi x
Dấu "=" xảy ra ⇔ \(x-\dfrac{1}{2}=0\Leftrightarrow x=\dfrac{1}{2}\)
Vậy GTNN của đa thức là \(\dfrac{99}{4}\) tại \(x=\dfrac{1}{2}\)
Thực hiện phép tính\(\left(\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{x^2-1}-\dfrac{x+3}{2\left(x+1\right)}\right):\dfrac{x}{x^2-1}\)
Rút gọn \(E=\left[\left(\dfrac{3}{x+1}-\dfrac{x}{x^2+2x+1}\right):\dfrac{2x^2+3x}{x^2+7x}+\dfrac{3}{x+1}\right].\dfrac{x^2+x}{3x+1}\)