\(S=2^{100}-2^{99}+2^{98}-...+2^2-2\\ 2S=2^{101}-2^{100}+2^{99}-...+2^3-2^2\\ 3S=2^{101}-2\\ S=\frac{2^{101}-2}{3}\)
\(S=2^{100}-2^{99}+2^{98}-...+2^2-2\\ 2S=2^{101}-2^{100}+2^{99}-...+2^3-2^2\\ 3S=2^{101}-2\\ S=\frac{2^{101}-2}{3}\)
Tính tổng : S\(_1\) = \(1+3^2+5^2+7^2+....+97^2+99^2\)
S\(_2\) =\(2+4^2+6^2+8^2+.....+98^2+100^2\)
S\(_3\) = 1.2.3+2.3.4+3.4.5+....+97.98.99
tính (100+ 99/2 +98/3 +...+ 1/100) / (1/2 + 1/3 +1/4+...+ 1/101) -2
Tính \(\left(100+\dfrac{99}{2}+\dfrac{98}{3}+... +\dfrac{2}{99}+\dfrac{1}{100}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{101}\right)-2\)
\(\left(100+\dfrac{99}{2}+\dfrac{98}{3}+\dfrac{97}{4}....+\dfrac{1}{100}\right):\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+....\dfrac{1}{100}\right)-2\)
Tính tổng sau:
S=\(\frac{1}{2\sqrt[]{1}+1\sqrt[]{2}}+\frac{1}{3\sqrt[]{2}+2\sqrt[]{3}}+.........+\frac{1}{100\sqrt[]{99}+99\sqrt[]{100}}\)
So sánh A với 1
\(A=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+\dfrac{1}{4\sqrt{3}+3\sqrt{4}}+...+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)
chung minh S chia het cho 40 biet \(S=1+3+3^2+3^3+...+3^{98}+3^{99}\)
Tính : (100+ \(\dfrac{99}{2}\)+\(\dfrac{98}{3}\)+......+\(\dfrac{1}{100}\)) : (\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+...........+\(\dfrac{1}{101}\))-2=
giúp mk vs
Tính các tổng sau:
\(T=\dfrac{1}{1+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{9}}+\dfrac{1}{\sqrt{9}+\sqrt{13}+......+\dfrac{1}{\sqrt{2013}+\sqrt{2017}}}\)
\(S=\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+.....+\dfrac{1}{100\sqrt{99}+99\sqrt{100}}\)