=(\(\dfrac{99}{2}+1+\dfrac{98}{3}+1+...+\dfrac{1}{100}+1\)):(\(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{101}\)) -2
=(\(\dfrac{101}{2}+\dfrac{101}{3}+...\dfrac{101}{100}\)):(\(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{101}\)) -2
=101(\(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{101}\)):(\(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{101}\))-2
=101 -2 =99
-_-