a) \(x^2-2xy-4z^2+y^2\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2z\right)^2\)
\(\Leftrightarrow\left(x-y\right)^2-\left(2z\right)^2\)
\(\Leftrightarrow\left[\left(x-y\right)+2z\right]\left[\left(x-y\right)-2z\right]\)
\(\Leftrightarrow\left(x-y+2z\right)\left(x-y-2z\right)\)
Tại x=6, y=-4, z=45
\(\left[6-\left(-4\right)+2.45\right]\left[6-\left(-4\right)-2.45\right]=100.\left(-80\right)=-8000\)
b) \(3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48\)
\(\Leftrightarrow3\left(x^2+7x-3x-21\right)+\left(x^2-4x+4\right)+48\)
\(\Leftrightarrow3x^2+21x-9x-63+x^2-4x+4+48\)
\(\Leftrightarrow4x^2+8x-11\)
Tại x=0,5 ta có:
\(4.\left(0,5\right)^2+8.0,5-11=-6\)
a)Đặt \(A=x^2-2xy-4z^2+y^2\)
\(=\left(x^2-2xy+y^2\right)-\left(2z\right)^2\)
\(=\left(x-y\right)^2-\left(2z\right)^2\)
\(=\left(x-y-2z\right)\left(x-y+2z\right)\)
Thay \(x=6;y=-4;z=45\) vào A, ta có:
\(A=\left[6-\left(-4\right)-2\cdot45\right]\left[6-\left(-4\right)+2\cdot45\right]\)
\(=100\cdot\left(-80\right)\)
\(=-8000\)
Vậy \(A=-8000\)
b) Đặt \(B=3\left(x-3\right)\left(x+7\right)+\left(x-4\right)^2+48\)
\(=3\left(x^2+7x-3x-21\right)+x^2-4x+4+48\)
\(=3x^2+12x-63+x^2-4x+52\)
\(=4x^2+8x-11\)
Thay \(x=0,5\) vào B, ta có:
\(B=4\cdot\left(0,5\right)^2+8\cdot0,5-11\)
\(=1\cdot4-11\)
\(=-6\)
Vậy \(B=-6\)