\(=\left(\dfrac{1}{14^{100}}\cdot2^{160}\right):\left(5^{289}\cdot2^{160}\right)\)
\(=\dfrac{2^{160}}{2^{100}\cdot7^{100}}\cdot\dfrac{1}{5^{289}\cdot2^{160}}=\dfrac{1}{14^{100}\cdot5^{289}}\)
\(=\left(\dfrac{1}{14^{100}}\cdot2^{160}\right):\left(5^{289}\cdot2^{160}\right)\)
\(=\dfrac{2^{160}}{2^{100}\cdot7^{100}}\cdot\dfrac{1}{5^{289}\cdot2^{160}}=\dfrac{1}{14^{100}\cdot5^{289}}\)
\(\dfrac{\left(13\dfrac{1}{4}-2\dfrac{5}{27}-10\dfrac{5}{6}\right).230\dfrac{1}{25}+46\dfrac{3}{4}}{\left(1\dfrac{3}{10}+\dfrac{10}{3}\right):\left(12\dfrac{1}{3}-14\dfrac{2}{7}\right)}\)
\(\dfrac{\left(1+2+3+...+99+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+.....+99-100}\)
1) Cho đa thức \(f\left(x\right)=x^{14}-14.x^{13}+14.x^{12}-...+13.x^2-14.x+14\) Tính f(13)
2) Tính : \(\left(\dfrac{3}{4}-81\right)\left(\dfrac{3^2}{5}-81\right)\left(\dfrac{3^3}{6}-81\right)...\left(\dfrac{3^{2000}}{2003}-81\right)\)
Tinh
\(\dfrac{\left(1+2+3+...+100\right)\left(\dfrac{1}{3}-\dfrac{1}{5}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(6,3.12-21.36\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}}\)
\(\dfrac{\left(\dfrac{3}{10}-\dfrac{4}{15}-\dfrac{7}{20}\right).\dfrac{5}{9}}{\left(\dfrac{1}{14}+\dfrac{1}{7}-\dfrac{-3}{35}\right)\dfrac{-4}{3}}\)
4. thực hiện phép tính
a.\(\dfrac{4}{9}+\dfrac{11}{125}-\dfrac{17}{18}+\dfrac{17}{14}-\dfrac{5}{7}\)
b. \(1-\dfrac{1}{2}+2-\dfrac{2}{3}+3-\dfrac{3}{4}+4-\dfrac{1}{4}-3-\dfrac{1}{3}-2-\dfrac{1}{2}-1\)
c.\(\dfrac{1}{3}.\dfrac{14}{25}-\dfrac{1}{2}:\dfrac{25}{14}\)
d. \(\dfrac{3}{7}+\dfrac{5}{13}+\dfrac{4}{7}-\dfrac{18}{13}\)
Tính \(A=1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+\dfrac{5}{2^5}+...+\dfrac{100}{2^{100}}\)
Tính \(A=1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+\dfrac{5}{2^5}+...+\dfrac{100}{2^{100}}\)
Tính giá trị biểu thức A , biết rằng A = M : N
Mà M = \(\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
N = \(\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)
Tính:
\(A=1+\dfrac{3}{2^3}+\dfrac{4}{2^4}+\dfrac{5}{2^5}+...+\dfrac{100}{2^{100}}\)
1+\(\dfrac{3}{2^3}\)+\(\dfrac{4}{2^4}\)+\(\dfrac{5}{2^5}+...+\dfrac{100}{2^{100}}\)