\(=lim\left[n\left(\sqrt{4+\frac{1}{n^2}}-2+2-\sqrt[3]{8+\frac{1}{n^2}}\right)\right]\)
\(=lim\left[n\left(\frac{\frac{1}{n^2}}{\sqrt{4+\frac{1}{n^2}}+2}-\frac{\frac{1}{n^2}}{4+2\sqrt[3]{8+\frac{1}{n^2}}+\sqrt[3]{\left(8+\frac{1}{n^2}\right)^2}}\right)\right]\)
\(=lim\left(\frac{\frac{1}{n}}{\sqrt{4+\frac{1}{n^2}}+2}-\frac{\frac{1}{n}}{4+2\sqrt[3]{8+\frac{1}{n^2}}+\sqrt[3]{\left(8+\frac{1}{n^2}\right)^2}}\right)=\frac{0}{2+2}-\frac{0}{4+4+2}=0\)