Áp dụng quy tắc l'Hôpital, ta tính đạo hàm của tử số và mẫu số riêng biệt.
Đạo hàm của tử số là 3, và đạo hàm của mẫu số là 6n^2.
Khi n tiến đến vô cùng, ta thấy rằng đạo hàm của tử số không phụ thuộc vào n, trong khi đạo hàm của mẫu số tăng lên vô cùng.
Vì vậy, theo quy tắc l'Hôpital, giới hạn của biểu thức ban đầu khi n tiến đến vô cùng là bằng giới hạn của tử số chia cho giới hạn của mẫu số.
Giới hạn của tử số là 3, và giới hạn của mẫu số là vô cùng.
Vậy, giới hạn của biểu thức lim(3n+1+2)/(2n^3n−2n+1) khi n tiến đến vô cùng là 0.
\( \text{Ta có:} \ \lim \dfrac{3^{n+1}+2^{2n}}{3^n-2^{2n+1}} \\ = \lim \dfrac{3 \cdot 3^n+4^n}{3^n-2 \cdot 4^n} \\ = \lim \dfrac{3 \cdot \left(\dfrac{3}{4}\right)^n+1}{\left(\dfrac{3}{4}\right)^n-2} \\ =-\dfrac{1}{2} \)